Deutsch   English   Français   Italiano  
<vipfru$ro7f$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: FromTheRafters <FTR@nomail.afraid.org>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
Date: Wed, 04 Dec 2024 06:53:29 -0500
Organization: Peripheral Visions
Lines: 54
Message-ID: <vipfru$ro7f$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vidcv3$18pdu$1@dont-email.me> <bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me> <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me> <vijhrd$34mp8$1@dont-email.me> <vilh59$3k21l$5@dont-email.me> <vilheq$3ks01$3@dont-email.me> <vilhjk$3k21l$9@dont-email.me> <vilhk8$3ks01$4@dont-email.me> <vilhnl$3k21l$10@dont-email.me> <viljdo$3k21l$12@dont-email.me> <87frn50zjp.fsf@bsb.me.uk> <vinuvc$cdlu$1@dont-email.me> <vinvvu$c7p5$6@dont-email.me> <vio0u4$c7p5$8@dont-email.me> <vio8rj$ei97$5@dont-email.me> <vio9nu$f13q$1@dont-email.me> <vip1f1$npsr$2@dont-email.me> <vipaue$qd3r$1@dont-email.me> <87y10vzo35.fsf@bsb.me.uk> <vipf6v$qr8p$2@dont-email.me>
Reply-To: erratic.howard@gmail.com
MIME-Version: 1.0
Content-Type: text/plain; charset="iso-8859-15"; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Wed, 04 Dec 2024 12:53:37 +0100 (CET)
Injection-Info: dont-email.me; posting-host="36d1760a1ed0cb3157bb9bb0b6985926";
	logging-data="909551"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/C2cjFUFLJh7mYfk9xaz8wMxsN/RMf0wg="
Cancel-Lock: sha1:ZsIqCISdodI53sBXpp5jExmEd8Y=
X-ICQ: 1701145376
X-Newsreader: MesNews/1.08.06.00-gb
Bytes: 3681

Moebius presented the following explanation :
> Am 04.12.2024 um 12:26 schrieb Ben Bacarisse:
>> FromTheRafters <FTR@nomail.afraid.org> writes:
>> 
>>> Moebius expressed precisely :
>>>> Am 04.12.2024 um 02:02 schrieb Moebius:
>>>>> Am 04.12.2024 um 01:47 schrieb Chris M. Thomasson:
>>>>>> On 12/3/2024 2:32 PM, Moebius wrote:
>>>>>>> Am 03.12.2024 um 23:16 schrieb Moebius:
>>>>>>>> Am 03.12.2024 um 22:59 schrieb Chris M. Thomasson:
>>>>>>>
>>>>>>>>> However, there is no largest natural number, when I think of that I
>>>>>>>>> see no limit to the naturals.
>>>>>>>
>>>>>>> Right. No "coventional" limit. Actually,
>>>>>>>
>>>>>>>  ����� "lim_(n->oo) n"
>>>>>>>
>>>>>>> does not exist.
>>>>>>
>>>>>> In the sense of as n tends to infinity there is no limit that can be
>>>>>> reached [...]?
>>>>> Exactly.
>>>>> We say, n is "growing beyond all bounds". :-P
>>>>
>>>> On the other hand, if we focus on the fact that the natural numbers are
>>>> sets _in the context of set theory_, namely
>>>>
>>>>         0 = {}, 1 = {{}}, 2 = {{}, {{}}}, ...
>>>>
>>>> =>      0 = {}, 1 = {0}, 2 = {0, 1}, ...
>>>>
>>>> (due to von Neumann)
>>>>
>>>> then we may conisider the "set-theoretic limit" of the sequence
>>>>
>>>>        (0, 1, 2, ...) = ({}, {0}, {0, 1}, ...).
>>>>
>>>> This way we get:
>>>>
>>>>        LIM_(n->oo) n = {0, 1, 2, ...} = IN. :-P
>>>>
>>>> I'd like to mention that "lim_(n->oo) n" is "old math" (oldies but
>>>> goldies) while "LIM_(n->oo) n" is "new math" (only possible after the
>>>> invention of set theory (->Cantor) and later developments (->axiomatic
>>>> set theory, natural numbers due to von Neumann, etc.).
>>>
>>> If you say so, but I haven't seen this written anywhere.
>
> @FromTheAfter: https://en.wikipedia.org/wiki/Set-theoretic_limit

I still don't see it. Don't get me wrong here, I like the capitalized 
LIM for set limit, it helps clarity in case one forgets the context is 
set theory.