Deutsch   English   Français   Italiano  
<viplj0$t1f8$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Wed, 4 Dec 2024 14:31:12 +0100
Organization: A noiseless patient Spider
Lines: 26
Message-ID: <viplj0$t1f8$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
 <4a810760-86a1-44bb-a191-28f70e0b361b@att.net> <vi6uc3$3v0dn$4@dont-email.me>
 <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me>
 <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net>
 <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de>
 <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org>
 <via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me>
 <viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me>
 <vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me>
 <vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me>
 <bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me>
 <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me>
 <vik73d$3a9jm$1@dont-email.me> <vikg6c$3c4tu$1@dont-email.me>
 <9bcc128b-dea8-4397-9963-45c93d1c14c7@att.net> <vimvgd$3vv5r$9@dont-email.me>
 <50c82b03-8aa1-492c-9af3-4cf2673d6516@att.net> <vip5mo$p0da$1@dont-email.me>
 <vipb6l$qfig$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Wed, 04 Dec 2024 14:31:12 +0100 (CET)
Injection-Info: dont-email.me; posting-host="af556ed33a2938584eabc358176a3edc";
	logging-data="951784"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+y2QG7Lty+IwHuWyC1OAmz06pus3mDpZg="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:mF3Cx20VBVdllJiH0AgZGvE6K48=
Content-Language: en-US
In-Reply-To: <vipb6l$qfig$1@dont-email.me>
Bytes: 2840

On 04.12.2024 11:33, FromTheRafters wrote:
> WM formulated the question :
>> On 03.12.2024 21:34, Jim Burns wrote:
>>> On 12/3/2024 8:02 AM, WM wrote:
>>
>>>> E(1)∩E(2)∩...∩E(n) = E(n).
>>>> Sequences which are identical in every term
>>>> have identical limits.
>>>
>>> An empty intersection does not require
>>>   an empty end.segment.
>>
>> A set of non-empty endsegments has a non-empty intersection. The 
>> reason is inclusion-monotony.
> 
> Conclusion not supported by facts.

In two sets A and B which are non-empty both but have an empty 
intersection, there must be at least two elements a and b which are in 
one endsegment but not in the other:
a ∈ A but a ∉ B and b ∉ A but b ∈ B.

Same with a set of endsegments. It can be divided into two sets for both 
of which the same is required.

Regards, WM