| Deutsch English Français Italiano | 
| <viplj0$t1f8$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article | 
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Wed, 4 Dec 2024 14:31:12 +0100 Organization: A noiseless patient Spider Lines: 26 Message-ID: <viplj0$t1f8$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <4a810760-86a1-44bb-a191-28f70e0b361b@att.net> <vi6uc3$3v0dn$4@dont-email.me> <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me> <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net> <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de> <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> <via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me> <viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me> <vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me> <vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me> <bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me> <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me> <vik73d$3a9jm$1@dont-email.me> <vikg6c$3c4tu$1@dont-email.me> <9bcc128b-dea8-4397-9963-45c93d1c14c7@att.net> <vimvgd$3vv5r$9@dont-email.me> <50c82b03-8aa1-492c-9af3-4cf2673d6516@att.net> <vip5mo$p0da$1@dont-email.me> <vipb6l$qfig$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Wed, 04 Dec 2024 14:31:12 +0100 (CET) Injection-Info: dont-email.me; posting-host="af556ed33a2938584eabc358176a3edc"; logging-data="951784"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+y2QG7Lty+IwHuWyC1OAmz06pus3mDpZg=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:mF3Cx20VBVdllJiH0AgZGvE6K48= Content-Language: en-US In-Reply-To: <vipb6l$qfig$1@dont-email.me> Bytes: 2840 On 04.12.2024 11:33, FromTheRafters wrote: > WM formulated the question : >> On 03.12.2024 21:34, Jim Burns wrote: >>> On 12/3/2024 8:02 AM, WM wrote: >> >>>> E(1)∩E(2)∩...∩E(n) = E(n). >>>> Sequences which are identical in every term >>>> have identical limits. >>> >>> An empty intersection does not require >>> an empty end.segment. >> >> A set of non-empty endsegments has a non-empty intersection. The >> reason is inclusion-monotony. > > Conclusion not supported by facts. In two sets A and B which are non-empty both but have an empty intersection, there must be at least two elements a and b which are in one endsegment but not in the other: a ∈ A but a ∉ B and b ∉ A but b ∈ B. Same with a set of endsegments. It can be divided into two sets for both of which the same is required. Regards, WM