Deutsch   English   Français   Italiano  
<viq3i2$105iq$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Wed, 4 Dec 2024 18:29:39 +0100
Organization: A noiseless patient Spider
Lines: 48
Message-ID: <viq3i2$105iq$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
 <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me>
 <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net>
 <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de>
 <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org>
 <via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me>
 <viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me>
 <vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me>
 <vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me>
 <bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me>
 <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me>
 <vik73d$3a9jm$1@dont-email.me> <vikg6c$3c4tu$1@dont-email.me>
 <9bcc128b-dea8-4397-9963-45c93d1c14c7@att.net> <vimvgd$3vv5r$9@dont-email.me>
 <50c82b03-8aa1-492c-9af3-4cf2673d6516@att.net> <vip5mo$p0da$1@dont-email.me>
 <vipb6l$qfig$1@dont-email.me> <viplj0$t1f8$1@dont-email.me>
 <5a122d22-2b21-4d65-9f5b-4f226eebf9d4@att.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Wed, 04 Dec 2024 18:29:39 +0100 (CET)
Injection-Info: dont-email.me; posting-host="af556ed33a2938584eabc358176a3edc";
	logging-data="1054298"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/lBjF3y97iS+P8/iFbmHArWKA1lCe133A="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:502ZGIXTnknznSHScZ0EhuhN88A=
In-Reply-To: <5a122d22-2b21-4d65-9f5b-4f226eebf9d4@att.net>
Content-Language: en-US
Bytes: 3142

On 04.12.2024 18:16, Jim Burns wrote:
> On 12/4/2024 8:31 AM, WM wrote:

> Below: two is finite.

No, they may be finite or infinite.
> 
>> In two sets A and B which
>> are non-empty both
>> but have an empty intersection,
>> there must be at least
>> two elements a and b which are
>> in one endsegment but not in the other:
>> a ∈ A but a ∉ B and b ∉ A but b ∈ B.
>>
>> Same with a set of endsegments.
>> It can be divided into two sets
>> for both of which the same is required.
> 
> No.
> Not all sets of end.segments
> can be subdivided into two FINITE sets.

The set of all endsegments can be subdivided into two sets, one of which 
is finite and the other is infinite.

> GREATERS is inclusion.monotonic and {}.free.

Then

> ⋂GREATERS = {}

is wrong.

E(1), E(2), E(3), ...
and
E(1), E(1)∩E(2), E(1)∩E(2)∩E(3), ...
are identical for every n and in the limit because
E(1)∩E(2)∩...∩E(n) = E(n).

For very naive readers I recommend the bathtub. All its states have a 
non-empty intersection unless one of the states is the empty state.

Regards, WM



Regards, WM