| Deutsch English Français Italiano |
|
<viq5n3$117gp$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: FromTheRafters <FTR@nomail.afraid.org> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Wed, 04 Dec 2024 13:06:23 -0500 Organization: Peripheral Visions Lines: 32 Message-ID: <viq5n3$117gp$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vi6uc3$3v0dn$4@dont-email.me> <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me> <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net> <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de> <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> <via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me> <viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me> <vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me> <vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me> <bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me> <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me> <vik73d$3a9jm$1@dont-email.me> <vikg6c$3c4tu$1@dont-email.me> <9bcc128b-dea8-4397-9963-45c93d1c14c7@att.net> <vimvgd$3vv5r$9@dont-email.me> <50c82b03-8aa1-492c-9af3-4cf2673d6516@att.net> <vip5mo$p0da$1@dont-email.me> <vipb6l$qfig$1@dont-email.me> <viplj0$t1f8$1@dont-email.me> Reply-To: erratic.howard@gmail.com MIME-Version: 1.0 Content-Type: text/plain; charset="utf-8"; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Wed, 04 Dec 2024 19:06:28 +0100 (CET) Injection-Info: dont-email.me; posting-host="36d1760a1ed0cb3157bb9bb0b6985926"; logging-data="1089049"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19eqKoa8w+lSwtWWIWwTGrqchS+dTLjG84=" Cancel-Lock: sha1:juXprvZxIotyx8TwTfLKg5GAghY= X-ICQ: 1701145376 X-Newsreader: MesNews/1.08.06.00-gb Bytes: 2962 WM laid this down on his screen : > On 04.12.2024 11:33, FromTheRafters wrote: >> WM formulated the question : >>> On 03.12.2024 21:34, Jim Burns wrote: >>>> On 12/3/2024 8:02 AM, WM wrote: >>> >>>>> E(1)∩E(2)∩...∩E(n) = E(n). >>>>> Sequences which are identical in every term >>>>> have identical limits. >>>> >>>> An empty intersection does not require >>>> an empty end.segment. >>> >>> A set of non-empty endsegments has a non-empty intersection. The reason is >>> inclusion-monotony. >> >> Conclusion not supported by facts. > > In two sets A and B which are non-empty both but have an empty intersection, > there must be at least two elements a and b which are in one endsegment but > not in the other: > a ∈ A but a ∉ B and b ∉ A but b ∈ B. Finite thinking. > Same with a set of endsegments. No, because they are infinite and have no last element to be in every participating endsegment. > It can be divided into two sets for both of > which the same is required.