Deutsch   English   Français   Italiano  
<viq5n3$117gp$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: FromTheRafters <FTR@nomail.afraid.org>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
Date: Wed, 04 Dec 2024 13:06:23 -0500
Organization: Peripheral Visions
Lines: 32
Message-ID: <viq5n3$117gp$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>   <vi6uc3$3v0dn$4@dont-email.me> <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me> <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net> <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de> <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> <via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me> <viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me> <vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me> <vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me> <bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me> <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me> <vik73d$3a9jm$1@dont-email.me> <vikg6c$3c4tu$1@dont-email.me> <9bcc128b-dea8-4397-9963-45c93d1c14c7@att.net> <vimvgd$3vv5r$9@dont-email.me> <50c82b03-8aa1-492c-9af3-4cf2673d6516@att.net> <vip5mo$p0da$1@dont-email.me> <vipb6l$qfig$1@dont-email.me> <viplj0$t1f8$1@dont-email.me>
Reply-To: erratic.howard@gmail.com
MIME-Version: 1.0
Content-Type: text/plain; charset="utf-8"; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Wed, 04 Dec 2024 19:06:28 +0100 (CET)
Injection-Info: dont-email.me; posting-host="36d1760a1ed0cb3157bb9bb0b6985926";
	logging-data="1089049"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX19eqKoa8w+lSwtWWIWwTGrqchS+dTLjG84="
Cancel-Lock: sha1:juXprvZxIotyx8TwTfLKg5GAghY=
X-ICQ: 1701145376
X-Newsreader: MesNews/1.08.06.00-gb
Bytes: 2962

WM laid this down on his screen :
> On 04.12.2024 11:33, FromTheRafters wrote:
>> WM formulated the question :
>>> On 03.12.2024 21:34, Jim Burns wrote:
>>>> On 12/3/2024 8:02 AM, WM wrote:
>>>
>>>>> E(1)∩E(2)∩...∩E(n) = E(n).
>>>>> Sequences which are identical in every term
>>>>> have identical limits.
>>>>
>>>> An empty intersection does not require
>>>>   an empty end.segment.
>>>
>>> A set of non-empty endsegments has a non-empty intersection. The reason is 
>>> inclusion-monotony.
>> 
>> Conclusion not supported by facts.
>
> In two sets A and B which are non-empty both but have an empty intersection, 
> there must be at least two elements a and b which are in one endsegment but 
> not in the other:
> a ∈ A but a ∉ B and b ∉ A but b ∈ B.

Finite thinking.

> Same with a set of endsegments.

No, because they are infinite and have no last element to be in every 
participating endsegment.

> It can be divided into two sets for both of 
> which the same is required.