Deutsch   English   Français   Italiano  
<virore$1g98u$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Thu, 5 Dec 2024 09:39:10 +0100
Organization: A noiseless patient Spider
Lines: 23
Message-ID: <virore$1g98u$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vi6uc3$3v0dn$4@dont-email.me>
 <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me>
 <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net>
 <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de>
 <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org>
 <via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me>
 <viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me>
 <vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me>
 <vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me>
 <bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me>
 <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me>
 <vik73d$3a9jm$1@dont-email.me> <vikg6c$3c4tu$1@dont-email.me>
 <9bcc128b-dea8-4397-9963-45c93d1c14c7@att.net> <vimvgd$3vv5r$9@dont-email.me>
 <50c82b03-8aa1-492c-9af3-4cf2673d6516@att.net> <vip5mo$p0da$1@dont-email.me>
 <vipb6l$qfig$1@dont-email.me> <viplj0$t1f8$1@dont-email.me>
 <viq5n3$117gp$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 05 Dec 2024 09:39:10 +0100 (CET)
Injection-Info: dont-email.me; posting-host="aa888f316780512dd90d3d5688c8792f";
	logging-data="1582366"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX19Nz+P0/m3W30CJxZRVQo6k79AAqaY21cU="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:9LAz98BccVOKoBsLE3j91UyEp8c=
In-Reply-To: <viq5n3$117gp$1@dont-email.me>
Content-Language: en-US
Bytes: 2751

On 04.12.2024 19:06, FromTheRafters wrote:
> WM laid this down on his screen :

>> In two sets A and B which are non-empty both but have an empty 
>> intersection, there must be at least two elements a and b which are in 
>> one endsegment but not in the other:
>> a ∈ A but a ∉ B and b ∉ A but b ∈ B.
> 
> Finite thinking.

Correct thinking is always valid.
> 
>> Same with a set of endsegments.
> 
> No, because they are infinite and have no last element to be in every 
> participating endsegment.

But they have all elements, all of which are finite and obey
E(1)∩E(2)∩...∩E(n) = E(n).
If all endsegments are non-empty, then they have a non-empty 
intersection unless the above condition holds.

Regards, WM