Deutsch   English   Français   Italiano  
<vitgk0$1u0mg$4@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Thu, 5 Dec 2024 16:30:57 -0800
Organization: A noiseless patient Spider
Lines: 10
Message-ID: <vitgk0$1u0mg$4@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vier32$1madr$1@dont-email.me>
 <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me>
 <vijhrd$34mp8$1@dont-email.me> <vilh59$3k21l$5@dont-email.me>
 <vilheq$3ks01$3@dont-email.me> <vilhjk$3k21l$9@dont-email.me>
 <vilhk8$3ks01$4@dont-email.me> <vilhnl$3k21l$10@dont-email.me>
 <viljdo$3k21l$12@dont-email.me> <87frn50zjp.fsf@bsb.me.uk>
 <vinuvc$cdlu$1@dont-email.me> <vinvvu$c7p5$6@dont-email.me>
 <vio0u4$c7p5$8@dont-email.me> <vio8rj$ei97$5@dont-email.me>
 <vio9nu$f13q$1@dont-email.me> <vip1f1$npsr$2@dont-email.me>
 <vipaue$qd3r$1@dont-email.me> <87y10vzo35.fsf@bsb.me.uk>
 <vipf6v$qr8p$2@dont-email.me> <87ser3zgez.fsf@bsb.me.uk>
 <viqca6$12cut$2@dont-email.me> <virpnj$1g4uq$1@dont-email.me>
 <52bcdc5dc54bbfb48a16c985885e5d527e483ceb@i2pn2.org>
 <visj63$1mmrh$3@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Fri, 06 Dec 2024 01:30:57 +0100 (CET)
Injection-Info: dont-email.me; posting-host="60cc1b43a0c5f0f5562bde95bed4a8a0";
	logging-data="2032336"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/Hz/aLUrjCqKVKzH2n0xpHzgA7PK6G/bs="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:3Z44YLTzDa5hkAa983AscM0ontU=
Content-Language: en-US
In-Reply-To: <visj63$1mmrh$3@dont-email.me>
Bytes: 2301

On 12/5/2024 8:08 AM, WM wrote:
> On 05.12.2024 13:26, Richard Damon wrote:
> 
>> Which ones can not be "taken" or "given".
> 
> Those with less than infinitely many successors. Cantor claims that all 
> numbers are in his bijections. No successors remaining.

Do you even know how to take any natural number, create a unique pair 
and then get back to the original number from said pair?