Deutsch English Français Italiano |
<viueda$27c49$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Fri, 6 Dec 2024 09:59:22 +0100 Organization: A noiseless patient Spider Lines: 16 Message-ID: <viueda$27c49$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vier32$1madr$1@dont-email.me> <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me> <vijhrd$34mp8$1@dont-email.me> <vilh59$3k21l$5@dont-email.me> <vilheq$3ks01$3@dont-email.me> <vilhjk$3k21l$9@dont-email.me> <vilhk8$3ks01$4@dont-email.me> <vilhnl$3k21l$10@dont-email.me> <viljdo$3k21l$12@dont-email.me> <87frn50zjp.fsf@bsb.me.uk> <vinuvc$cdlu$1@dont-email.me> <vinvvu$c7p5$6@dont-email.me> <vio0u4$c7p5$8@dont-email.me> <vio8rj$ei97$5@dont-email.me> <vio9nu$f13q$1@dont-email.me> <vip1f1$npsr$2@dont-email.me> <vipaue$qd3r$1@dont-email.me> <87y10vzo35.fsf@bsb.me.uk> <vipf6v$qr8p$2@dont-email.me> <87ser3zgez.fsf@bsb.me.uk> <viqca6$12cut$2@dont-email.me> <virpnj$1g4uq$1@dont-email.me> <ff5ee533dd180eb24978c76e7e00ba6f4676d51a@i2pn2.org> <vis3iq$1iu5p$1@dont-email.me> <visafv$1kq6a$1@dont-email.me> <visi6v$1mmrh$1@dont-email.me> <vislkd$1nn4k$1@dont-email.me> <visune$1pp27$1@dont-email.me> <vit9ge$1sgci$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Fri, 06 Dec 2024 09:59:23 +0100 (CET) Injection-Info: dont-email.me; posting-host="ff5d4c1746be174aa0911c0a940afba9"; logging-data="2338953"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/yWPl8M0BhXeSfis/TUXvM4/A0DzRQ7/U=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:WKBHST327A+4aO15CMO/4uobQC0= Content-Language: en-US In-Reply-To: <vit9ge$1sgci$1@dont-email.me> Bytes: 2529 On 05.12.2024 23:29, FromTheRafters wrote: > WM presented the following explanation : >> Your answer to Identical sequences have the same limit: "Running with >> buffaloes does not make one a buffalo" appeared to doubt my claim. > > Your example ignores the step-by-step dwindling aspect of the > intersections of your infinite sequence of endsegments. No, it uses this dwindling in endsegments and intersections. ∀n ∈ ℕ: E(1)∩E(2)∩...∩E(n) = E(n) Identical sequences have identical limits. Regards, WM