Deutsch   English   Français   Italiano  
<viueda$27c49$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Fri, 6 Dec 2024 09:59:22 +0100
Organization: A noiseless patient Spider
Lines: 16
Message-ID: <viueda$27c49$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vier32$1madr$1@dont-email.me>
 <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me>
 <vijhrd$34mp8$1@dont-email.me> <vilh59$3k21l$5@dont-email.me>
 <vilheq$3ks01$3@dont-email.me> <vilhjk$3k21l$9@dont-email.me>
 <vilhk8$3ks01$4@dont-email.me> <vilhnl$3k21l$10@dont-email.me>
 <viljdo$3k21l$12@dont-email.me> <87frn50zjp.fsf@bsb.me.uk>
 <vinuvc$cdlu$1@dont-email.me> <vinvvu$c7p5$6@dont-email.me>
 <vio0u4$c7p5$8@dont-email.me> <vio8rj$ei97$5@dont-email.me>
 <vio9nu$f13q$1@dont-email.me> <vip1f1$npsr$2@dont-email.me>
 <vipaue$qd3r$1@dont-email.me> <87y10vzo35.fsf@bsb.me.uk>
 <vipf6v$qr8p$2@dont-email.me> <87ser3zgez.fsf@bsb.me.uk>
 <viqca6$12cut$2@dont-email.me> <virpnj$1g4uq$1@dont-email.me>
 <ff5ee533dd180eb24978c76e7e00ba6f4676d51a@i2pn2.org>
 <vis3iq$1iu5p$1@dont-email.me> <visafv$1kq6a$1@dont-email.me>
 <visi6v$1mmrh$1@dont-email.me> <vislkd$1nn4k$1@dont-email.me>
 <visune$1pp27$1@dont-email.me> <vit9ge$1sgci$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Fri, 06 Dec 2024 09:59:23 +0100 (CET)
Injection-Info: dont-email.me; posting-host="ff5d4c1746be174aa0911c0a940afba9";
	logging-data="2338953"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/yWPl8M0BhXeSfis/TUXvM4/A0DzRQ7/U="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:WKBHST327A+4aO15CMO/4uobQC0=
Content-Language: en-US
In-Reply-To: <vit9ge$1sgci$1@dont-email.me>
Bytes: 2529

On 05.12.2024 23:29, FromTheRafters wrote:
> WM presented the following explanation :

>> Your answer to Identical sequences have the same limit: "Running with 
>> buffaloes does not make one a buffalo" appeared to doubt my claim.
> 
> Your example ignores the step-by-step dwindling aspect of the 
> intersections of your infinite sequence of endsegments.

No, it uses this dwindling in endsegments and intersections.
∀n ∈ ℕ: E(1)∩E(2)∩...∩E(n) = E(n)
Identical sequences have identical limits.

Regards, WM