| Deutsch English Français Italiano |
|
<vj6vhh$elqh$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.logic
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
(extra-ordinary)
Date: Mon, 9 Dec 2024 15:40:48 +0100
Organization: A noiseless patient Spider
Lines: 17
Message-ID: <vj6vhh$elqh$2@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vhc77g$hdd4$1@dont-email.me>
<476ae6cb-1116-44b1-843e-4be90d594372@att.net> <vhhr6f$1q0r9$1@dont-email.me>
<ffa63cb5-8898-4aa7-80eb-8b2c51c9986d@att.net> <vhkhun$28qt$1@dont-email.me>
<vhmtph$j1ek$1@dont-email.me> <vhn1jk$jf6v$1@dont-email.me>
<vhn3po$jvo1$1@dont-email.me> <vhn420$jf6v$3@dont-email.me>
<vhpg51$13soc$1@dont-email.me> <vhpnrb$15239$1@dont-email.me>
<vhs2gn$1kjtc$1@dont-email.me> <vhs4ue$1ku9t$1@dont-email.me>
<vhv6or$280s6$1@dont-email.me> <vhvbjb$28n6o$1@dont-email.me>
<vi1dbj$2moon$1@dont-email.me> <vi224l$2pgrd$1@dont-email.me>
<vi4383$3csd4$2@dont-email.me> <vi4a6c$3dt4s$2@dont-email.me>
<vi6p1l$3uoti$1@dont-email.me> <vi6unr$3v0dn$5@dont-email.me>
<vihd3l$2d9fk$1@dont-email.me> <vihfai$2cnof$1@dont-email.me>
<vijrru$37ce1$1@dont-email.me> <vikh9k$3cua3$1@dont-email.me>
<viml28$6j3$1@dont-email.me> <0b1bb1a1-40e3-464f-9e3d-a5ac22dfdc6f@tha.de>
<95183b4d9c2e32651963bac79965313ad2bfe7e8@i2pn2.org>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Mon, 09 Dec 2024 15:40:49 +0100 (CET)
Injection-Info: dont-email.me; posting-host="494cdfa528696f2d5423ae7fa961822f";
logging-data="481105"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/J/nFt2N+v2rlJCeemaSLhU/pBQ9XAXSQ="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:3FdDIMdhqubF7Z5fIqKL0KqmbXU=
In-Reply-To: <95183b4d9c2e32651963bac79965313ad2bfe7e8@i2pn2.org>
Content-Language: en-US
Bytes: 2634
On 08.12.2024 21:22, joes wrote:
> Am Tue, 03 Dec 2024 12:10:53 +0100 schrieb WM:
>> On 03.12.2024 11:03, Mikko wrote:
>>
>>> I understand mathematics
>> Hardly, though you may have the impression.
>> Proof: You cannot understand that the function f(10n) = n from D = {10n
>> | n ∈ ℕ} to ℕ = {1, 2, 3, ...} is not a bijection because for every
>> initial segment {1, 2, 3, ..., n} of ℕ there are too few numbers of the
>> form 10n that can be paired with numbers n.
> Wow. For every segment there are numbers {10, 20, …, 10n}.
But for every segments more are needed: {1, 2, 3, ..., 10n}
Regards, WM