Deutsch English Français Italiano |
<vj7on0$j93d$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Mon, 9 Dec 2024 22:50:23 +0100 Organization: A noiseless patient Spider Lines: 48 Message-ID: <vj7on0$j93d$2@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vj1acu$31atn$3@dont-email.me> <ec451cd6-16ba-463d-8658-8588093e1696@att.net> <vj2f61$3b1no$1@dont-email.me> <10ebeeea-6712-4544-870b-92803ee1e398@att.net> <vj3tl0$3nktg$2@dont-email.me> <bdcf000e-e013-4f67-b906-1a7531fa00e4@att.net> <vj56u4$1n2e$1@dont-email.me> <CRbu3VG8fXxISQSTM4XAQLjZYg4@jntp> <vj7h3j$hvcf$4@dont-email.me> <GqWAjLrJtPLD4wVNB7BHb0YPxt0@jntp> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Mon, 09 Dec 2024 22:50:25 +0100 (CET) Injection-Info: dont-email.me; posting-host="1a239d597933cb01fc6328fadccaad32"; logging-data="631917"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/GVwteQroj+9M6szxdeifBRZ4ZNuEsVjY=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:ArWM2yx7ZrZLymcdHEAFqsDoRnU= In-Reply-To: <GqWAjLrJtPLD4wVNB7BHb0YPxt0@jntp> Content-Language: en-US Bytes: 2993 On 09.12.2024 21:07, Python wrote: > Le 09/12/2024 à 20:40, Crank Wolfgang Mückenheim from Hochschule > Augsburg aka WM a écrit : >> On 09.12.2024 20:18, Python wrote: >>> Le 08/12/2024 à 23:34, Crank Wolfgang Mückenheim from Hochschule >>> Augsburg aka WM a écrit : >>>> On 08.12.2024 19:01, Jim Burns wrote: >>>>> On 12/8/2024 5:50 AM, WM wrote: >>>> >>>>>> ∀n ∈ ℕ: E(1)∩E(2)∩...∩E(n) = E(n) >>>>>> What can't you understand here? >>>>> >>>>> {E(i):i} is the set.of.all non.empty end.segments. >>>>> >>>>> ⋂{E(i):i} is the intersection.of.all >>>> non.empty end.segments. >>>>> >>>>> ∀n ∈ ℕ: >>>>> {E(i):i}∪{E(n+1)} = {E(i):i} >>>>> Each is "already" in. >>>> >>>> Not the empty endsegment. >>>> ∀n ∈ ℕ: E(n) is non-empty. But not every E(n+1). >>> >>> You could hardly write something worse and more wrong that that. >>> >>> The very core property of N is that if n ∈ ℕ then n+1 ∈ ℕ. >> >> That is correct for definable natural numbers and even for almost all >> dark natural numbers. >> >> The very core property of analysis is that equal sequences have equal >> limits if they have limits at all. > > E(1)∩E(2)∩...∩E(n) = E(n) > > Lim E(1)∩E(2)∩...∩E(n) = {} > Lim E(n) = {} > > The are equal. Not in a set theory where every endsegment is infinite. An empty limit endsegment requires finite predecessors because there is only one way to emptiness allowed, namely this one: ∀k ∈ ℕ : E(k+1) = E(k) \ {k}. Regards, WM