Deutsch English Français Italiano |
<vj7q35$j93d$4@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Mon, 9 Dec 2024 23:13:56 +0100 Organization: A noiseless patient Spider Lines: 39 Message-ID: <vj7q35$j93d$4@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vipb6l$qfig$1@dont-email.me> <viplj0$t1f8$1@dont-email.me> <5a122d22-2b21-4d65-9f5b-4f226eebf9d4@att.net> <viq3i2$105iq$1@dont-email.me> <e055ec41-a98d-4917-802f-169575a5b556@att.net> <virq3t$1gs07$1@dont-email.me> <c8faf784-348a-42e9-a784-b2337f4e8160@att.net> <3af23566-0dfc-4001-b19b-96e5d4110fee@tha.de> <ae606e53-0ded-4101-9685-fa33c9a35cb9@att.net> <viuc2a$27gm1$1@dont-email.me> <8a53c5d4-4afd-4f25-b1da-30d57e7fe91c@att.net> <vj1acu$31atn$3@dont-email.me> <ec451cd6-16ba-463d-8658-8588093e1696@att.net> <vj2f61$3b1no$1@dont-email.me> <10ebeeea-6712-4544-870b-92803ee1e398@att.net> <vj3tl0$3nktg$2@dont-email.me> <1f1a4089-dfeb-45f8-9c48-a36f6a4688fb@att.net> <vj6bqo$b6bt$1@dont-email.me> <f1bcc151-ecf7-47d9-98a6-07048d422ee1@att.net> <vj7hdm$hvcf$5@dont-email.me> <e7b09ffb-cca3-4c85-9800-1ba36ab573df@att.net> <vj7o79$j93d$1@dont-email.me> <vj7odr$jdqb$1@dont-email.me> <vj7p6l$j93d$3@dont-email.me> <vj7pk7$jkd1$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Mon, 09 Dec 2024 23:13:58 +0100 (CET) Injection-Info: dont-email.me; posting-host="1a239d597933cb01fc6328fadccaad32"; logging-data="631917"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/vcE6BxrvQm3evRAnglpn5sanFQ8bKOfk=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:lkIvje4Cfkp824DBbB0wBEUiaXs= Content-Language: en-US In-Reply-To: <vj7pk7$jkd1$1@dont-email.me> Bytes: 3293 On 09.12.2024 23:05, FromTheRafters wrote: > WM presented the following explanation : >> On 09.12.2024 22:45, FromTheRafters wrote: >>> WM explained : >>>> On 09.12.2024 21:55, Jim Burns wrote: >>>>> On 12/9/2024 2:45 PM, WM wrote: >>>>>> On 09.12.2024 18:20, Jim Burns wrote: >>>>> >>>>>>> Your two sequences as you have written them >>>>>>> are equal, and have equal limits: the empty set. >>>>>>> >>>>>>> I suspect that it is the distinction between >>>>>>> cardinality of limit #⋂{E(i):i} = #{} = 0 and >>>>>>> limit of cardinalities ⋂{#E(i):i} = ⋂{ℵ₀:i} = ℵ₀ >>>>>> >>>>>> The cardinality of the limit is >>>>>> the cardinality of the limit set. >>>> >>>> By the way, we need no cardinality. We need only the sequence of >>>> sets with the empty set in the limit. >>>> >>>>> The limit set is >>>>> the set of numbers in common with each end.segment >>>>> and isn't anything else. >>>> >>>> The limit set is the same for both sequences. >>>> (E(1)∩E(2)∩...∩E(n)) and (E(n)) >>>> In order to stop tricksters we go without cardinality. >>> >>> But size matters, or so I've heard. >> >> In sequences of sets only sets matter. > > The why are you averse to the emptyset? Not at all! It proves the existence of dark numbers. Regards, WM