Warning: mysqli::__construct(): (HY000/1203): User howardkn already has more than 'max_user_connections' active connections in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\includes\artfuncs.php on line 21
Failed to connect to MySQL: (1203) User howardkn already has more than 'max_user_connections' active connections
Warning: mysqli::query(): Couldn't fetch mysqli in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\index.php on line 66
Article <vj7q35$j93d$4@dont-email.me>
Deutsch   English   Français   Italiano  
<vj7q35$j93d$4@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Mon, 9 Dec 2024 23:13:56 +0100
Organization: A noiseless patient Spider
Lines: 39
Message-ID: <vj7q35$j93d$4@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vipb6l$qfig$1@dont-email.me>
 <viplj0$t1f8$1@dont-email.me> <5a122d22-2b21-4d65-9f5b-4f226eebf9d4@att.net>
 <viq3i2$105iq$1@dont-email.me> <e055ec41-a98d-4917-802f-169575a5b556@att.net>
 <virq3t$1gs07$1@dont-email.me> <c8faf784-348a-42e9-a784-b2337f4e8160@att.net>
 <3af23566-0dfc-4001-b19b-96e5d4110fee@tha.de>
 <ae606e53-0ded-4101-9685-fa33c9a35cb9@att.net> <viuc2a$27gm1$1@dont-email.me>
 <8a53c5d4-4afd-4f25-b1da-30d57e7fe91c@att.net> <vj1acu$31atn$3@dont-email.me>
 <ec451cd6-16ba-463d-8658-8588093e1696@att.net> <vj2f61$3b1no$1@dont-email.me>
 <10ebeeea-6712-4544-870b-92803ee1e398@att.net> <vj3tl0$3nktg$2@dont-email.me>
 <1f1a4089-dfeb-45f8-9c48-a36f6a4688fb@att.net> <vj6bqo$b6bt$1@dont-email.me>
 <f1bcc151-ecf7-47d9-98a6-07048d422ee1@att.net> <vj7hdm$hvcf$5@dont-email.me>
 <e7b09ffb-cca3-4c85-9800-1ba36ab573df@att.net> <vj7o79$j93d$1@dont-email.me>
 <vj7odr$jdqb$1@dont-email.me> <vj7p6l$j93d$3@dont-email.me>
 <vj7pk7$jkd1$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Mon, 09 Dec 2024 23:13:58 +0100 (CET)
Injection-Info: dont-email.me; posting-host="1a239d597933cb01fc6328fadccaad32";
	logging-data="631917"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/vcE6BxrvQm3evRAnglpn5sanFQ8bKOfk="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:lkIvje4Cfkp824DBbB0wBEUiaXs=
Content-Language: en-US
In-Reply-To: <vj7pk7$jkd1$1@dont-email.me>
Bytes: 3293

On 09.12.2024 23:05, FromTheRafters wrote:
> WM presented the following explanation :
>> On 09.12.2024 22:45, FromTheRafters wrote:
>>> WM explained :
>>>> On 09.12.2024 21:55, Jim Burns wrote:
>>>>> On 12/9/2024 2:45 PM, WM wrote:
>>>>>> On 09.12.2024 18:20, Jim Burns wrote:
>>>>>
>>>>>>> Your two sequences as you have written them
>>>>>>> are equal, and have equal limits: the empty set.
>>>>>>>
>>>>>>> I suspect that it is the distinction between
>>>>>>> cardinality of limit #⋂{E(i):i} = #{} = 0  and
>>>>>>> limit of cardinalities ⋂{#E(i):i} = ⋂{ℵ₀:i} = ℵ₀
>>>>>>
>>>>>> The cardinality of the limit is
>>>>>> the cardinality of the limit set.
>>>>
>>>> By the way, we need no cardinality. We need only the sequence of 
>>>> sets with the empty set in the limit.
>>>>
>>>>> The limit set is
>>>>> the set of numbers in common with each end.segment
>>>>> and isn't anything else.
>>>>
>>>> The limit set is the same for both sequences.
>>>> (E(1)∩E(2)∩...∩E(n)) and (E(n))
>>>> In order to stop tricksters we go without cardinality.
>>>
>>> But size matters, or so I've heard.
>>
>> In sequences of sets only sets matter.
> 
> The why are you averse to the emptyset?

Not at all! It proves the existence of dark numbers.

Regards, WM