Deutsch English Français Italiano |
<vj9s4i$11a3p$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.logic Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Tue, 10 Dec 2024 18:01:04 +0100 Organization: A noiseless patient Spider Lines: 13 Message-ID: <vj9s4i$11a3p$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vhhr6f$1q0r9$1@dont-email.me> <ffa63cb5-8898-4aa7-80eb-8b2c51c9986d@att.net> <vhkhun$28qt$1@dont-email.me> <vhmtph$j1ek$1@dont-email.me> <vhn1jk$jf6v$1@dont-email.me> <vhn3po$jvo1$1@dont-email.me> <vhn420$jf6v$3@dont-email.me> <vhpg51$13soc$1@dont-email.me> <vhpnrb$15239$1@dont-email.me> <vhs2gn$1kjtc$1@dont-email.me> <vhs4ue$1ku9t$1@dont-email.me> <vhv6or$280s6$1@dont-email.me> <vhvbjb$28n6o$1@dont-email.me> <vi1dbj$2moon$1@dont-email.me> <vi224l$2pgrd$1@dont-email.me> <vi4383$3csd4$2@dont-email.me> <vi4a6c$3dt4s$2@dont-email.me> <vi6p1l$3uoti$1@dont-email.me> <vi6unr$3v0dn$5@dont-email.me> <vihd3l$2d9fk$1@dont-email.me> <vihfai$2cnof$1@dont-email.me> <vijrru$37ce1$1@dont-email.me> <vikh9k$3cua3$1@dont-email.me> <viml28$6j3$1@dont-email.me> <0b1bb1a1-40e3-464f-9e3d-a5ac22dfdc6f@tha.de> <95183b4d9c2e32651963bac79965313ad2bfe7e8@i2pn2.org> <vj6vhh$elqh$2@dont-email.me> <33512b63716ac263c16b7d64cd1d77578c8aea9d@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Tue, 10 Dec 2024 18:01:06 +0100 (CET) Injection-Info: dont-email.me; posting-host="76161c015d6b8237a412351767b0136f"; logging-data="1091705"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19gyV2TRY/rdUxyjWJ0WMo5vwtHA7gLBF8=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:/mC3tdGBKJfDfXVy+0RS1cvpBME= Content-Language: en-US In-Reply-To: <33512b63716ac263c16b7d64cd1d77578c8aea9d@i2pn2.org> Bytes: 2464 On 10.12.2024 13:19, Richard Damon wrote: > > The pairing is between TWO sets, not the members of a set with itself. The pairing is between the elements. Otherwise you could pair R and Q by simply claiming it. "The infinite sequence thus defined has the peculiar property to contain the positive rational numbers completely, and each of them only once at a determined place." [Cantor] Note the numbers, not the set. Regards, WM