Deutsch   English   Français   Italiano  
<vjagbo$15stu$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: FromTheRafters <FTR@nomail.afraid.org>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
Date: Tue, 10 Dec 2024 17:46:11 -0500
Organization: Peripheral Visions
Lines: 18
Message-ID: <vjagbo$15stu$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>   <vimvgd$3vv5r$9@dont-email.me> <50c82b03-8aa1-492c-9af3-4cf2673d6516@att.net> <vip5mo$p0da$1@dont-email.me> <vipb6l$qfig$1@dont-email.me> <viplj0$t1f8$1@dont-email.me> <5a122d22-2b21-4d65-9f5b-4f226eebf9d4@att.net> <viq3i2$105iq$1@dont-email.me> <e055ec41-a98d-4917-802f-169575a5b556@att.net> <virq3t$1gs07$1@dont-email.me> <c8faf784-348a-42e9-a784-b2337f4e8160@att.net> <3af23566-0dfc-4001-b19b-96e5d4110fee@tha.de> <ae606e53-0ded-4101-9685-fa33c9a35cb9@att.net> <viuc2a$27gm1$1@dont-email.me> <8a53c5d4-4afd-4f25-b1da-30d57e7fe91c@att.net> <vj1acu$31atn$3@dont-email.me> <ec451cd6-16ba-463d-8658-8588093e1696@att.net> <vj2f61$3b1no$1@dont-email.me> <10ebeeea-6712-4544-870b-92803ee1e398@att.net> <vj3tl0$3nktg$2@dont-email.me> <1f1a4089-dfeb-45f8-9c48-a36f6a4688fb@att.net> <vj6bqo$b6bt$1@dont-email.me> <dd34fc1a59ee9107041418a2e597bba281d30d0b@i2pn2.org> <vj7nea$j609$1@dont-email.me> <33f28df0237f8d102519dae4ce5ed43e3ffff529@i2pn2.org>
Reply-To: erratic.howard@gmail.com
MIME-Version: 1.0
Content-Type: text/plain; charset="utf-8"; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Tue, 10 Dec 2024 23:46:42 +0100 (CET)
Injection-Info: dont-email.me; posting-host="9192773c17187b8a218de717aafdcd4e";
	logging-data="1242046"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/ZME5Fca/Kwywqs62fynf9lx1nvd/wAB8="
Cancel-Lock: sha1:IUF1hsDK/E++6dlxoLLWccDywAM=
X-Newsreader: MesNews/1.08.06.00-gb
X-ICQ: 1701145376
Bytes: 2710

joes pretended :
> Am Mon, 09 Dec 2024 22:28:41 +0100 schrieb WM:
>> On 09.12.2024 20:23, joes wrote:
>>  > Am Mon, 09 Dec 2024 10:04:23 +0100 schrieb WM:
>>  >> On 08.12.2024 19:01, Jim Burns wrote:
>>  >>
>>  >>> You (WM) are considering infinite dark.finite.cardinals,
>>  >>> which do not exist.
>>  >> Then analysis is contradicted in set theory.
>>  >> ∀n ∈ ℕ: E(1)∩E(2)∩...∩E(n) = E(n).
>>  >> The limit of the left-hand side is empty, the limit of the
>>  >> right-hand side is full, i.e. not empty.
>>  >> I do not tolerate that.
>>  > What is the RHS limit?
>> There is no limit in set theory, contrary to the LHS limit { }.
> Dafuq? How do you derive that? Why not for the RHS?

That sounds downright sinister.