Deutsch English Français Italiano |
<vjcqrb$1molo$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Wed, 11 Dec 2024 20:57:29 +0100 Organization: A noiseless patient Spider Lines: 23 Message-ID: <vjcqrb$1molo$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <viplj0$t1f8$1@dont-email.me> <5a122d22-2b21-4d65-9f5b-4f226eebf9d4@att.net> <viq3i2$105iq$1@dont-email.me> <e055ec41-a98d-4917-802f-169575a5b556@att.net> <virq3t$1gs07$1@dont-email.me> <c8faf784-348a-42e9-a784-b2337f4e8160@att.net> <3af23566-0dfc-4001-b19b-96e5d4110fee@tha.de> <ae606e53-0ded-4101-9685-fa33c9a35cb9@att.net> <viuc2a$27gm1$1@dont-email.me> <8a53c5d4-4afd-4f25-b1da-30d57e7fe91c@att.net> <vj1acu$31atn$3@dont-email.me> <ec451cd6-16ba-463d-8658-8588093e1696@att.net> <vj2f61$3b1no$1@dont-email.me> <10ebeeea-6712-4544-870b-92803ee1e398@att.net> <vj3tl0$3nktg$2@dont-email.me> <1f1a4089-dfeb-45f8-9c48-a36f6a4688fb@att.net> <vj6bqo$b6bt$1@dont-email.me> <f1bcc151-ecf7-47d9-98a6-07048d422ee1@att.net> <vj7hdm$hvcf$5@dont-email.me> <e7b09ffb-cca3-4c85-9800-1ba36ab573df@att.net> <vj7o79$j93d$1@dont-email.me> <fe5bf28a-a597-4132-bc3f-94d4927b3304@att.net> <vjc8nc$1j576$1@dont-email.me> <e62c5824-fe06-43bf-9c17-2ea0c70a624b@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Wed, 11 Dec 2024 20:57:31 +0100 (CET) Injection-Info: dont-email.me; posting-host="67f81b26eb6abf8c68ee6a2d50910cd1"; logging-data="1794744"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/Lw1bi2wDbU10eMcDsKY1/ywgSxrvZjvg=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:XGg74rieSKo4MPIJApuKBXRT0BY= Content-Language: en-US In-Reply-To: <e62c5824-fe06-43bf-9c17-2ea0c70a624b@att.net> Bytes: 2616 On 11.12.2024 20:27, Jim Burns wrote: > > ⋂{E(i):i} = {}. Of course. But all intersections with finite contents are invisible. > Therefore, > one.element.emptier ℕ\{0} > is not.smaller.than ℕ It is a smaller set. Cardinalities are not useful. > > That is the reason that > the end.segments of ℕ > stay the same larger.than.any.finite size > as they lose each element of ℕ. The intersection of all is empty. The sequence of intersections cannot lose more than one element per term. The terms immediately before the empty intersection are finite. Regards, WM