Deutsch English Français Italiano |
<vjfn3e$2upa9$4@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Thu, 12 Dec 2024 23:11:57 +0100 Organization: A noiseless patient Spider Lines: 30 Message-ID: <vjfn3e$2upa9$4@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <3af23566-0dfc-4001-b19b-96e5d4110fee@tha.de> <ae606e53-0ded-4101-9685-fa33c9a35cb9@att.net> <viuc2a$27gm1$1@dont-email.me> <8a53c5d4-4afd-4f25-b1da-30d57e7fe91c@att.net> <vj1acu$31atn$3@dont-email.me> <ec451cd6-16ba-463d-8658-8588093e1696@att.net> <vj2f61$3b1no$1@dont-email.me> <10ebeeea-6712-4544-870b-92803ee1e398@att.net> <vj3tl0$3nktg$2@dont-email.me> <1f1a4089-dfeb-45f8-9c48-a36f6a4688fb@att.net> <vj6bqo$b6bt$1@dont-email.me> <f1bcc151-ecf7-47d9-98a6-07048d422ee1@att.net> <vj7hdm$hvcf$5@dont-email.me> <e7b09ffb-cca3-4c85-9800-1ba36ab573df@att.net> <vj7o79$j93d$1@dont-email.me> <fe5bf28a-a597-4132-bc3f-94d4927b3304@att.net> <vjc8nc$1j576$1@dont-email.me> <e62c5824-fe06-43bf-9c17-2ea0c70a624b@att.net> <vjcqrb$1molo$1@dont-email.me> <10fbe4d3-a1d1-4740-8d23-8cd96f3b9bfc@att.net> <vjd1km$1nq97$1@dont-email.me> <696c5a55-3cb6-4fa7-bd11-9b8f8eeeaef7@att.net> <vje94n$2206n$2@dont-email.me> <3f902f42-e435-4a44-a179-687ad2a33f16@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Thu, 12 Dec 2024 23:11:58 +0100 (CET) Injection-Info: dont-email.me; posting-host="b813437e7e36d641655e1eddc9d0fc02"; logging-data="3106121"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18hJuFsw8o1pAVKs9R/5B4hJaOrihtN2Xc=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:JBSXY5gWPgj0na07n+Y8tzPhTAE= Content-Language: en-US In-Reply-To: <3f902f42-e435-4a44-a179-687ad2a33f16@att.net> Bytes: 2748 On 12.12.2024 17:15, Jim Burns wrote: > On 12/12/2024 4:07 AM, WM wrote: > The existence of a bridge implies that, > somewhere we can't see, > a size which cannot change by 1 > changes by 1 to > a size which can change by 1 Every set can change by one element. No size is required and no size is possible if this is forbidden. > >> There must be >> a continuous sequence of steps of height 1 >> from many elements to none. > > What you describe is many, not infinity. > >> Can you confirm this? > > For many, yes, > For infinity, never. > Having a continuous sequence of steps of height 1 > from many elements to none > is what makes it finite. It is needed by Cantors mappings. Regards, WM