Deutsch English Français Italiano |
<vjhp8b$3gjbv$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.logic Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Fri, 13 Dec 2024 18:00:59 +0100 Organization: A noiseless patient Spider Lines: 16 Message-ID: <vjhp8b$3gjbv$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vhn420$jf6v$3@dont-email.me> <vhpg51$13soc$1@dont-email.me> <vhpnrb$15239$1@dont-email.me> <vhs2gn$1kjtc$1@dont-email.me> <vhs4ue$1ku9t$1@dont-email.me> <vhv6or$280s6$1@dont-email.me> <vhvbjb$28n6o$1@dont-email.me> <vi1dbj$2moon$1@dont-email.me> <vi224l$2pgrd$1@dont-email.me> <vi4383$3csd4$2@dont-email.me> <vi4a6c$3dt4s$2@dont-email.me> <vi6p1l$3uoti$1@dont-email.me> <vi6unr$3v0dn$5@dont-email.me> <vihd3l$2d9fk$1@dont-email.me> <vihfai$2cnof$1@dont-email.me> <vijrru$37ce1$1@dont-email.me> <vikh9k$3cua3$1@dont-email.me> <viml28$6j3$1@dont-email.me> <0b1bb1a1-40e3-464f-9e3d-a5ac22dfdc6f@tha.de> <95183b4d9c2e32651963bac79965313ad2bfe7e8@i2pn2.org> <vj6vhh$elqh$2@dont-email.me> <33512b63716ac263c16b7d64cd1d77578c8aea9d@i2pn2.org> <vj9s4i$11a3p$1@dont-email.me> <vjam6d$1700v$1@dont-email.me> <vjc65g$1i9vk$3@dont-email.me> <vjf7kl$2s7e5$1@dont-email.me> <vjfmq3$2upa9$3@dont-email.me> <c6b624cb0b1b55d54aab969ee5b4e283ec7be3cd@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Fri, 13 Dec 2024 18:00:59 +0100 (CET) Injection-Info: dont-email.me; posting-host="eb03d3d138eff609427a9489ad5e7754"; logging-data="3689855"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/piouakU6K9Hk0UfDlC4S5CEAmKadse/0=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:CzVsHoysSP0jL2TuzvyDUDhlRr0= In-Reply-To: <c6b624cb0b1b55d54aab969ee5b4e283ec7be3cd@i2pn2.org> Content-Language: en-US Bytes: 2713 On 13.12.2024 13:11, Richard Damon wrote: > Note, the pairing is not between some elements of N that are also in D, > with other elements in N, but the elements of D and the elements on N. Yes all elements of D, as black hats attached to the elements 10n of ℕ, have to get attached to all elements of ℕ. There the simple shift from 10n to n (division by 10) is applied. > > You just don' understand what it means to PAIR elements of two sets. That pairs the elements of D with the elements of ℕ. Alas, it can be proved that for every interval [1, n] the deficit of hats amounts to at least 90 %. And beyond all n, there are no further hats. Regards, WM