Deutsch English Français Italiano |
<vjplmh$177tn$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Mon, 16 Dec 2024 17:49:20 +0100 Organization: A noiseless patient Spider Lines: 17 Message-ID: <vjplmh$177tn$2@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vikh9k$3cua3$1@dont-email.me> <viml28$6j3$1@dont-email.me> <0b1bb1a1-40e3-464f-9e3d-a5ac22dfdc6f@tha.de> <95183b4d9c2e32651963bac79965313ad2bfe7e8@i2pn2.org> <vj6vhh$elqh$2@dont-email.me> <33512b63716ac263c16b7d64cd1d77578c8aea9d@i2pn2.org> <vj9s4i$11a3p$1@dont-email.me> <vjam6d$1700v$1@dont-email.me> <vjc65g$1i9vk$3@dont-email.me> <vjf7kl$2s7e5$1@dont-email.me> <vjfmq3$2upa9$3@dont-email.me> <c6b624cb0b1b55d54aab969ee5b4e283ec7be3cd@i2pn2.org> <vjhp8b$3gjbv$1@dont-email.me> <dc9e7638be92c4d158f238f8c042c8559cd46521@i2pn2.org> <vjjg6p$3tvsg$1@dont-email.me> <c31edc62508876748c8cf69f93ab80c0a7fd84ac@i2pn2.org> <vjka3b$1tms$3@dont-email.me> <e11a34c507a23732d83e3d0fcde7b609cdaf3ade@i2pn2.org> <vjmse3$k2go$2@dont-email.me> <069069bf23698c157ddfd9b62b9b2f632b484c40@i2pn2.org> <vjooeq$11n0g$2@dont-email.me> <c611fdd5710ea4e05d421327898dfd48277b66d6@i2pn2.org> <vjpbo0$15bha$2@dont-email.me> <7aa4daa380966c031798568433c3a7e079cd29cf@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Mon, 16 Dec 2024 17:49:22 +0100 (CET) Injection-Info: dont-email.me; posting-host="22f1e3b0c4513fe0a907c4a82bf16a00"; logging-data="1286071"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18sQno1Hh6FehAf2cTBWmjfHbwjYvXSsqQ=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:DtJl+dwnecSc1LjHibNfeSo/DOY= In-Reply-To: <7aa4daa380966c031798568433c3a7e079cd29cf@i2pn2.org> Content-Language: en-US Bytes: 2584 On 16.12.2024 16:40, joes wrote: > Am Mon, 16 Dec 2024 14:59:27 +0100 schrieb WM: >> On 16.12.2024 12:55, joes wrote: >>> Am Mon, 16 Dec 2024 09:30:18 +0100 schrieb WM: >> >>>> All intervals do it because there is no n outside of all intervals [1, >>>> n]. My proof applies all intervals. >>> It does not. It applies to every single finite „interval”, >> What element is not covered by all intervals that I use? >>> but not to the whole N. > You do not cover N, only finite parts. What do I miss to cover? Regards, WM