Deutsch English Français Italiano |
<vjreth$1lvej$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Tue, 17 Dec 2024 10:05:52 +0100 Organization: A noiseless patient Spider Lines: 28 Message-ID: <vjreth$1lvej$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <95183b4d9c2e32651963bac79965313ad2bfe7e8@i2pn2.org> <vj6vhh$elqh$2@dont-email.me> <33512b63716ac263c16b7d64cd1d77578c8aea9d@i2pn2.org> <vj9s4i$11a3p$1@dont-email.me> <vjam6d$1700v$1@dont-email.me> <vjc65g$1i9vk$3@dont-email.me> <vjf7kl$2s7e5$1@dont-email.me> <vjfmq3$2upa9$3@dont-email.me> <c6b624cb0b1b55d54aab969ee5b4e283ec7be3cd@i2pn2.org> <vjhp8b$3gjbv$1@dont-email.me> <dc9e7638be92c4d158f238f8c042c8559cd46521@i2pn2.org> <vjjg6p$3tvsg$1@dont-email.me> <c31edc62508876748c8cf69f93ab80c0a7fd84ac@i2pn2.org> <vjka3b$1tms$3@dont-email.me> <e11a34c507a23732d83e3d0fcde7b609cdaf3ade@i2pn2.org> <vjmse3$k2go$2@dont-email.me> <069069bf23698c157ddfd9b62b9b2f632b484c40@i2pn2.org> <vjooeq$11n0g$2@dont-email.me> <c611fdd5710ea4e05d421327898dfd48277b66d6@i2pn2.org> <vjpbo0$15bha$2@dont-email.me> <7aa4daa380966c031798568433c3a7e079cd29cf@i2pn2.org> <vjplmh$177tn$2@dont-email.me> <e08128aa5aa13493ccc0f9a4e0473fdc1515cb24@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Tue, 17 Dec 2024 10:05:54 +0100 (CET) Injection-Info: dont-email.me; posting-host="4f4ec8624b25ff621c88d1eb422844a5"; logging-data="1768915"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18pkmjxuJ651Iy7K0xX2XiCe4MQ/ZxpUJI=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:9XtPbpWZwEx0ndp9CMOOMet5Bmw= In-Reply-To: <e08128aa5aa13493ccc0f9a4e0473fdc1515cb24@i2pn2.org> Content-Language: en-US Bytes: 2994 On 16.12.2024 18:25, joes wrote: > Am Mon, 16 Dec 2024 17:49:20 +0100 schrieb WM: >> On 16.12.2024 16:40, joes wrote: >>> Am Mon, 16 Dec 2024 14:59:27 +0100 schrieb WM: >>>> On 16.12.2024 12:55, joes wrote: >>>>> Am Mon, 16 Dec 2024 09:30:18 +0100 schrieb WM: >>>> >>>>>> All intervals do it because there is no n outside of all intervals >>>>>> [1, n]. My proof applies all intervals. >>>>> It does not. It applies to every single finite „interval”, >>>> What element is not covered by all intervals that I use? >>>>> but not to the whole N. >>> You do not cover N, only finite parts. >> What do I miss to cover? > Inf.many numbers for every n. But Cantor using every n does not miss to cover anything? > N is infinite. Every element is the last element of a FISON [1, n]. ℕ is the set of all FISONs. I use all FISONs. ∀n ∈ ℕ: f([1, n]) =< 1/10. Ever heard of the effect of the universal quantifier? Regards, WM Regards, WM