Deutsch   English   Français   Italiano  
<vjreth$1lvej$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Tue, 17 Dec 2024 10:05:52 +0100
Organization: A noiseless patient Spider
Lines: 28
Message-ID: <vjreth$1lvej$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
 <95183b4d9c2e32651963bac79965313ad2bfe7e8@i2pn2.org>
 <vj6vhh$elqh$2@dont-email.me>
 <33512b63716ac263c16b7d64cd1d77578c8aea9d@i2pn2.org>
 <vj9s4i$11a3p$1@dont-email.me> <vjam6d$1700v$1@dont-email.me>
 <vjc65g$1i9vk$3@dont-email.me> <vjf7kl$2s7e5$1@dont-email.me>
 <vjfmq3$2upa9$3@dont-email.me>
 <c6b624cb0b1b55d54aab969ee5b4e283ec7be3cd@i2pn2.org>
 <vjhp8b$3gjbv$1@dont-email.me>
 <dc9e7638be92c4d158f238f8c042c8559cd46521@i2pn2.org>
 <vjjg6p$3tvsg$1@dont-email.me>
 <c31edc62508876748c8cf69f93ab80c0a7fd84ac@i2pn2.org>
 <vjka3b$1tms$3@dont-email.me>
 <e11a34c507a23732d83e3d0fcde7b609cdaf3ade@i2pn2.org>
 <vjmse3$k2go$2@dont-email.me>
 <069069bf23698c157ddfd9b62b9b2f632b484c40@i2pn2.org>
 <vjooeq$11n0g$2@dont-email.me>
 <c611fdd5710ea4e05d421327898dfd48277b66d6@i2pn2.org>
 <vjpbo0$15bha$2@dont-email.me>
 <7aa4daa380966c031798568433c3a7e079cd29cf@i2pn2.org>
 <vjplmh$177tn$2@dont-email.me>
 <e08128aa5aa13493ccc0f9a4e0473fdc1515cb24@i2pn2.org>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Tue, 17 Dec 2024 10:05:54 +0100 (CET)
Injection-Info: dont-email.me; posting-host="4f4ec8624b25ff621c88d1eb422844a5";
	logging-data="1768915"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18pkmjxuJ651Iy7K0xX2XiCe4MQ/ZxpUJI="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:9XtPbpWZwEx0ndp9CMOOMet5Bmw=
In-Reply-To: <e08128aa5aa13493ccc0f9a4e0473fdc1515cb24@i2pn2.org>
Content-Language: en-US
Bytes: 2994

On 16.12.2024 18:25, joes wrote:
> Am Mon, 16 Dec 2024 17:49:20 +0100 schrieb WM:
>> On 16.12.2024 16:40, joes wrote:
>>> Am Mon, 16 Dec 2024 14:59:27 +0100 schrieb WM:
>>>> On 16.12.2024 12:55, joes wrote:
>>>>> Am Mon, 16 Dec 2024 09:30:18 +0100 schrieb WM:
>>>>
>>>>>> All intervals do it because there is no n outside of all intervals
>>>>>> [1, n]. My proof applies all intervals.
>>>>> It does not. It applies to every single finite „interval”,
>>>> What element is not covered by all intervals that I use?
>>>>> but not to the whole N.
>>> You do not cover N, only finite parts.
>> What do I miss to cover?
> Inf.many numbers for every n.

But Cantor using every n does not miss to cover anything?

 > N is infinite.

Every element is the last element of a FISON [1, n]. ℕ is the set of all 
FISONs. I use all FISONs. ∀n ∈ ℕ: f([1, n]) =< 1/10.
Ever heard of the effect of the universal quantifier?

Regards, WM

Regards, WM