| Deutsch English Français Italiano |
|
<vjssc0$1tr00$3@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
(extra-ordinary)
Date: Tue, 17 Dec 2024 23:01:36 +0100
Organization: A noiseless patient Spider
Lines: 17
Message-ID: <vjssc0$1tr00$3@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vi6unr$3v0dn$5@dont-email.me>
<vihd3l$2d9fk$1@dont-email.me> <vihfai$2cnof$1@dont-email.me>
<vijrru$37ce1$1@dont-email.me> <vikh9k$3cua3$1@dont-email.me>
<viml28$6j3$1@dont-email.me> <0b1bb1a1-40e3-464f-9e3d-a5ac22dfdc6f@tha.de>
<95183b4d9c2e32651963bac79965313ad2bfe7e8@i2pn2.org>
<vj6vhh$elqh$2@dont-email.me>
<33512b63716ac263c16b7d64cd1d77578c8aea9d@i2pn2.org>
<vj9s4i$11a3p$1@dont-email.me> <vjam6d$1700v$1@dont-email.me>
<vjc65g$1i9vk$3@dont-email.me> <vjf7kl$2s7e5$1@dont-email.me>
<vjfmq3$2upa9$3@dont-email.me> <vjjh0o$3u5ec$1@dont-email.me>
<vjjkds$3ukck$1@dont-email.me> <vjmd21$hq8s$1@dont-email.me>
<vjmepr$hk44$2@dont-email.me>
<aa42107d707ba33ffeca0d8788beb98043794604@i2pn2.org>
<vjnbin$lspo$3@dont-email.me>
<67e587a384538d7d311613630232bf025415e67b@i2pn2.org>
<vjoq5d$11n0g$6@dont-email.me>
<4efa80aa8ba6633e37130c0374e2f44d4c89c8a3@i2pn2.org>
<vjrjsm$1cvib$2@solani.org>
<fc91fdea66d308d1896b0c4fad4d1c121b4d72b9@i2pn2.org>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Tue, 17 Dec 2024 23:01:37 +0100 (CET)
Injection-Info: dont-email.me; posting-host="acd6e6aac9a4524fb309aaa38e5ddcd3";
logging-data="2026496"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18QnRY2JglyjM0XjaFEkCzHjJmsgcFZvLk="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:GLNGVmtQwC7ELxcHruWuJtyvxV8=
In-Reply-To: <fc91fdea66d308d1896b0c4fad4d1c121b4d72b9@i2pn2.org>
Content-Language: en-US
Bytes: 2493
On 17.12.2024 18:09, joes wrote:
> Am Tue, 17 Dec 2024 11:30:46 +0100 schrieb WM:
>> An unbounded number can be subtracted individually.
> As long as it is finite.
>
>> However, if all are
>> subtracted individually, then a last one is subtracted. That cannot
>> happen.
> Whatever do you mean by that? There is no last to inf.many. „All” are
> not finite.
But all can be subtracted collectively: |ℕ \ {1, 2, 3, ...}| = 0.
Regards, WM