Deutsch   English   Français   Italiano  
<vk1b63$2srss$6@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Thu, 19 Dec 2024 15:38:59 +0100
Organization: A noiseless patient Spider
Lines: 42
Message-ID: <vk1b63$2srss$6@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
 <33512b63716ac263c16b7d64cd1d77578c8aea9d@i2pn2.org>
 <vj9s4i$11a3p$1@dont-email.me> <vjam6d$1700v$1@dont-email.me>
 <vjc65g$1i9vk$3@dont-email.me> <vjf7kl$2s7e5$1@dont-email.me>
 <vjfmq3$2upa9$3@dont-email.me>
 <c6b624cb0b1b55d54aab969ee5b4e283ec7be3cd@i2pn2.org>
 <vjhp8b$3gjbv$1@dont-email.me>
 <dc9e7638be92c4d158f238f8c042c8559cd46521@i2pn2.org>
 <vjjg6p$3tvsg$1@dont-email.me>
 <c31edc62508876748c8cf69f93ab80c0a7fd84ac@i2pn2.org>
 <vjka3b$1tms$3@dont-email.me>
 <e11a34c507a23732d83e3d0fcde7b609cdaf3ade@i2pn2.org>
 <vjmse3$k2go$2@dont-email.me>
 <069069bf23698c157ddfd9b62b9b2f632b484c40@i2pn2.org>
 <vjooeq$11n0g$2@dont-email.me>
 <2d3620a6e2a8a57d9db7a33c9d476fe03cac455b@i2pn2.org>
 <vjrfcc$1m1b2$1@dont-email.me>
 <3c08ed64fa6193dc9ab6733b807a5c99a49810aa@i2pn2.org>
 <vjss56$1tr00$2@dont-email.me>
 <357a8740434fb6f1b847130ac3afbd33c850fc37@i2pn2.org>
 <vjv6fb$2dujf$2@dont-email.me>
 <87351ff85f6c8b1c6c56e8a023f1301298af93e7@i2pn2.org>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 19 Dec 2024 15:38:59 +0100 (CET)
Injection-Info: dont-email.me; posting-host="b073b4606e4aae76152a468e84e37494";
	logging-data="3043228"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/pctTcN8GkFZMJSRVph2QoLzKerEnlLJw="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:sX5l6B1x9MFOISmuP5MD1svx0Mw=
In-Reply-To: <87351ff85f6c8b1c6c56e8a023f1301298af93e7@i2pn2.org>
Content-Language: en-US
Bytes: 4147

On 18.12.2024 21:15, joes wrote:
> Am Wed, 18 Dec 2024 20:06:19 +0100 schrieb WM:
>> On 18.12.2024 13:29, Richard Damon wrote:
>>> On 12/17/24 4:57 PM, WM wrote:
>>
>>>> You claimed that he uses more than I do, namely all natural numbers.
>>> Right, you never use ALL the natural numbers, only a finite subset of
>>> them.
>> Please give the quote from which you obtain a difference between "The
>> infinite sequence thus defined has the peculiar property to contain the
>> positive rational numbers completely, and each of them only once at a
>> determined place." [G. Cantor, letter to R. Lipschitz (19 Nov 1883)] and
>> my "the infinite sequence f(n) = [1, n] contains all natural numbers n
>> completely, and each of them only once at a determined place."
> You deny the limit.
> 
When dealing with Cantor's mappings between infinite sets, it is argued 
usually that these mappings require a "limit" to be completed or that 
they cannot be completed. Such arguing has to be rejected flatly. For 
this reason some of Cantor's statements are quoted below.

"If we think the numbers p/q in such an order [...] then every number 
p/q comes at an absolutely fixed position of a simple infinite sequence" 
[E. Zermelo: "Georg Cantor – Gesammelte Abhandlungen mathematischen und 
philosophischen Inhalts", Springer, Berlin (1932) p. 126]

"thus we get the epitome (ω) of all real algebraic numbers [...] and 
with respect to this order we can talk about the th algebraic number 
where not a single one of this epitome () has been forgotten." [E. 
Zermelo: "Georg Cantor – Gesammelte Abhandlungen mathematischen und 
philosophischen Inhalts", Springer, Berlin (1932) p. 116]

"such that every element of the set stands at a definite position of 
this sequence" [E. Zermelo: "Georg Cantor – Gesammelte Abhandlungen 
mathematischen und philosophischen Inhalts", Springer, Berlin (1932) p. 152]

The clarity of these expressions is noteworthy: all and every, 
completely, at an absolutely fixed position, th number, where not a 
single one has been forgotten.

Regards, WM