| Deutsch English Français Italiano |
|
<vk92v4$khib$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
(extra-ordinary)
Date: Sun, 22 Dec 2024 14:07:47 +0100
Organization: A noiseless patient Spider
Lines: 13
Message-ID: <vk92v4$khib$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
<6c74c2e9-17d7-4eb4-afcd-c058309b6c8a@tha.de>
<4327ba4a-e810-4565-83e8-b9572018ac35@att.net> <vjjmg2$3ukcl$1@dont-email.me>
<b1d876ee-d815-4540-bc6f-fe7c27c146a3@att.net> <vjmgdm$i9be$1@dont-email.me>
<abf7344d-b95b-4432-8626-8356dc1dd261@att.net> <vjn9ud$mlgt$2@dont-email.me>
<4051acc5-d00a-40d2-8ef7-cf2b91ae75b6@att.net> <vjreik$1lokm$1@dont-email.me>
<8d69d6cd-76bc-4dc1-894e-709d044e68a1@att.net> <vjst0u$1tqvv$3@dont-email.me>
<7356267c-491b-45c2-b86a-d40c45dfa40c@att.net> <vjufr6$29khr$3@dont-email.me>
<4bf8a77e-4b2a-471f-9075-0b063098153f@att.net> <vjv6uv$2dra0$1@dont-email.me>
<31180d7e-1c2b-4e2b-b8d6-e3e62f05da43@att.net> <vk1brk$2srss$7@dont-email.me>
<bb80c6c5-04c0-4e2d-bb21-ac51aab9e252@att.net> <vk23m7$31l8v$1@dont-email.me>
<bce1b27d-170c-4385-8938-36805c983c49@att.net> <vk693m$f52$2@dont-email.me>
<a17eb8b6-7d11-4c59-b98c-b4d5de8358ca@att.net> <vk7dmb$7mh2$2@dont-email.me>
<a09d4258ff7e70765662a6d390eccedcb89c09c4@i2pn2.org>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Sun, 22 Dec 2024 14:07:48 +0100 (CET)
Injection-Info: dont-email.me; posting-host="779124b0f9eb435d01e5c1ff507e7f96";
logging-data="673355"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1//G1C5nJ1nct8mHZZ6GUxRxC8FFSx8Rmo="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:8398kMLSdCJisK6x9Xd55ddMUnc=
In-Reply-To: <a09d4258ff7e70765662a6d390eccedcb89c09c4@i2pn2.org>
Content-Language: en-US
Bytes: 2471
On 22.12.2024 13:28, Richard Damon wrote:
> On 12/21/24 4:58 PM, WM wrote:
>> Finite endsegments have a natural number of elements.
>
> SO, none of your E(n) are finite endsegments, since they all have an
> INFINITE number of elements, being the INFINITE set of
> { n+1, n+2, n+3, ... } by your definition.
The intersection of all endsegments is empty. It cannot get empty other
than by one element per endsegment.
Regards, WM