Deutsch English Français Italiano |
<vkiku8$2pt4u$4@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius <invalid@example.invalid> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Thu, 26 Dec 2024 05:09:44 +0100 Organization: A noiseless patient Spider Lines: 23 Message-ID: <vkiku8$2pt4u$4@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <357a8740434fb6f1b847130ac3afbd33c850fc37@i2pn2.org> <vjv6fb$2dujf$2@dont-email.me> <b0c7449413fec43bc18e8d2d67da1c779a350bc2@i2pn2.org> <vk1cad$2srst$1@dont-email.me> <ceaaf003457afd2e381c8f115a4e691611162ffe@i2pn2.org> <vk3g0l$3cjvc$3@dont-email.me> <vk3lv1$3e9se$1@dont-email.me> <vk3vh6$3g0a3$1@dont-email.me> <vk4jfi$3k04r$4@dont-email.me> <d4d38bb75acc471a684759922b8f8d32707855a8@i2pn2.org> <vk6uu7$4f7v$1@dont-email.me> <cdd51ad73c172f40f3212801d7afd9eef8e60d47@i2pn2.org> <vk936n$khia$1@dont-email.me> <787067e5de3c455cb57389315b6821e96bcf86af@i2pn2.org> <f713f771-6cdd-44bb-90ab-7300d739f84b@tha.de> <1b6f89e7c35e4c9674af5a480e4bab6cb72e0915@i2pn2.org> <vkbalq$14tg7$2@dont-email.me> <733ce219e9d2422859035e5094a7b3e92eea9c47@i2pn2.org> <vke3bi$1q36j$2@dont-email.me> <md-cnZfuwoBJMPf6nZ2dnZfqnPGdnZ2d@giganews.com> <vkf5et$20tbj$1@dont-email.me> <BnWdnWn9ULkj0fb6nZ2dnZfqnPSdnZ2d@giganews.com> <vkikfn$2q3p8$1@dont-email.me> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Thu, 26 Dec 2024 05:09:45 +0100 (CET) Injection-Info: dont-email.me; posting-host="0c688897b869a728a98ca6eb2216ef6b"; logging-data="2946206"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18EhcLFJHmegCBreivyUZpy" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:E/DRFnq8O8Ud28OmnbMYh2dhCog= Content-Language: de-DE In-Reply-To: <vkikfn$2q3p8$1@dont-email.me> Bytes: 2630 Am 26.12.2024 um 05:02 schrieb Chris M. Thomasson: > On 12/24/2024 4:07 PM, Ross Finlayson wrote: >> On 12/24/2024 12:27 PM, Chris M. Thomasson wrote: >>> Cantor's Pairing works with any unsigned integer. >> >> No, it works with two copies of all the integers, [...] > > It works with any unsigned integer. It works especially with the (elements in the) two sets {0, 2, 4, ...} and {1, 3, 5, ...}: n <-> n+1 . P := {(n, n+1) : n e {0, 2, 4, ...}} . Then P is {(0, 1}, (2, 3}, (4, 5}, ...}. .. .. ..