Deutsch English Français Italiano |
<vkindt$2qe5i$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Wed, 25 Dec 2024 20:52:14 -0800 Organization: A noiseless patient Spider Lines: 14 Message-ID: <vkindt$2qe5i$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vgab11$st52$3@dont-email.me> <ecffc7c0-05a2-42df-bf4c-8ae3c2f809d6@att.net> <vgb0ep$11df5$4@dont-email.me> <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <vgfgpo$22pcv$1@dont-email.me> <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <vgg57o$25ovs$2@dont-email.me> <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <vggh9v$27rg8$3@dont-email.me> <ff2c4d7c-33b4-4aad-a6b2-88799097b86b@att.net> <vghuoc$2j3sg$1@dont-email.me> <d79e791d-d670-4a5a-bd26-fdf72bcde6bc@att.net> <vgj4lk$2ova9$3@dont-email.me> <f154138e-4482-4267-9332-151e2fd9f1ba@att.net> <vgkoi7$b5pp$1@solani.org> <d780ead415ff3a62ccd9b606bcd743fea3d8002c@i2pn2.org> <vglf32$396r8$1@dont-email.me> <521668acd2ed6184f2f2e36f67fdb1bc3a997524@i2pn2.org> <vgni8n$3osmc$3@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Thu, 26 Dec 2024 05:52:14 +0100 (CET) Injection-Info: dont-email.me; posting-host="72bff690d08d044e67c8f5e452822306"; logging-data="2963634"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19dNmul0zvx3Irx2rfzz2X81xTsLn/A0Cg=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:bhEok9ifqzLNjNw8ATZP2O9//ck= In-Reply-To: <vgni8n$3osmc$3@dont-email.me> Content-Language: en-US Bytes: 2456 On 11/9/2024 3:49 AM, WM wrote: > On 08.11.2024 20:05, joes wrote: >> Am Fri, 08 Nov 2024 17:43:15 +0100 schrieb WM: > >>> I take it as evident that intervals of the measure 1/5 of the positive >>> real axis will not, by any shuffling, cover the real axis completely, >>> let alone infinitely often. I think who believes this is a deplorable >>> fanatic if not a fool. >> What is the measure you are using and what does it give for the real >> axis? > > The measure is the density 1/5 for every finite segment and its limit 1/5. Huh? Keep in mind that Cantor Pairing works with any unsigned integer.