Deutsch English Français Italiano |
<vkjf11$2umsm$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Thu, 26 Dec 2024 12:34:56 +0100 Organization: A noiseless patient Spider Lines: 15 Message-ID: <vkjf11$2umsm$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vjreik$1lokm$1@dont-email.me> <8d69d6cd-76bc-4dc1-894e-709d044e68a1@att.net> <vjst0u$1tqvv$3@dont-email.me> <7356267c-491b-45c2-b86a-d40c45dfa40c@att.net> <vjufr6$29khr$3@dont-email.me> <4bf8a77e-4b2a-471f-9075-0b063098153f@att.net> <vjv6uv$2dra0$1@dont-email.me> <31180d7e-1c2b-4e2b-b8d6-e3e62f05da43@att.net> <vk1brk$2srss$7@dont-email.me> <bb80c6c5-04c0-4e2d-bb21-ac51aab9e252@att.net> <vk23m7$31l8v$1@dont-email.me> <bce1b27d-170c-4385-8938-36805c983c49@att.net> <vk693m$f52$2@dont-email.me> <a17eb8b6-7d11-4c59-b98c-b4d5de8358ca@att.net> <vk7dmb$7mh2$2@dont-email.me> <b72490c1-e61a-4c23-a3a5-f624b2c084e4@att.net> <vk8tbq$j9h1$1@dont-email.me> <0393b227-fa2e-4649-a363-e53ab6e73327@att.net> <vka3i4$q8gm$1@dont-email.me> <1e19b1be-00eb-4f2a-ba97-e66aa395b56b@att.net> <vkbgtu$15tgg$1@dont-email.me> <eaebc5c9-2e25-4b0e-89f6-2a94289e6a59@att.net> <vke3r2$1old3$1@dont-email.me> <ca2513eac866ce464f38ba57e33fda6c615d6029@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 26 Dec 2024 12:34:57 +0100 (CET) Injection-Info: dont-email.me; posting-host="26a2c5c5f7b2556246a56be7e13f3cc0"; logging-data="3103638"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18jVM7GAU5KiPMx0QQEjsM7nTU6ZMXnSYE=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:bSD3Xanzf9Sk4AGXzD+P6jDFkZI= In-Reply-To: <ca2513eac866ce464f38ba57e33fda6c615d6029@i2pn2.org> Content-Language: en-US Bytes: 2502 On 24.12.2024 15:03, Richard Damon wrote: > On 12/24/24 5:53 AM, WM wrote: >> Of course not. There is a bijection {n} <--> E(n). No cardinal number >> ℵ₀ is involved. >> > Except that both sets, this size of the Natural Numbers and the size of > the set of E(n), are Aleph_0. They are in bijection. Cantor uses all n, I use all E(n) and therefore all n too. You claimed that I did not. You were wrong. Regards, WM