Deutsch   English   Français   Italiano  
<vklt5r$3hhem$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Fri, 27 Dec 2024 10:48:44 +0100
Organization: A noiseless patient Spider
Lines: 13
Message-ID: <vklt5r$3hhem$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vjreik$1lokm$1@dont-email.me>
 <8d69d6cd-76bc-4dc1-894e-709d044e68a1@att.net> <vjst0u$1tqvv$3@dont-email.me>
 <7356267c-491b-45c2-b86a-d40c45dfa40c@att.net> <vjufr6$29khr$3@dont-email.me>
 <4bf8a77e-4b2a-471f-9075-0b063098153f@att.net> <vjv6uv$2dra0$1@dont-email.me>
 <31180d7e-1c2b-4e2b-b8d6-e3e62f05da43@att.net> <vk1brk$2srss$7@dont-email.me>
 <bb80c6c5-04c0-4e2d-bb21-ac51aab9e252@att.net> <vk23m7$31l8v$1@dont-email.me>
 <bce1b27d-170c-4385-8938-36805c983c49@att.net> <vk693m$f52$2@dont-email.me>
 <a17eb8b6-7d11-4c59-b98c-b4d5de8358ca@att.net> <vk7dmb$7mh2$2@dont-email.me>
 <b72490c1-e61a-4c23-a3a5-f624b2c084e4@att.net> <vk8tbq$j9h1$1@dont-email.me>
 <0393b227-fa2e-4649-a363-e53ab6e73327@att.net> <vka3i4$q8gm$1@dont-email.me>
 <vka9gq$rs83$1@dont-email.me> <vkb8cq$14c7u$3@dont-email.me>
 <ed9549eb9f3acf563c39acbc0b49f4d032dbf7ed@i2pn2.org>
 <vke37h$1q36j$1@dont-email.me>
 <7c930a1c536316c10e7382f20b747e147949ce43@i2pn2.org>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Fri, 27 Dec 2024 10:48:43 +0100 (CET)
Injection-Info: dont-email.me; posting-host="f21ad65f82114817152b89dc8d4bb0f6";
	logging-data="3720662"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+Nkxj6wYhvT7b9kcm/C3O3v1Y9Y2+swLo="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:1dvEOVnOi60JEMih2DHyPdfMMy8=
In-Reply-To: <7c930a1c536316c10e7382f20b747e147949ce43@i2pn2.org>
Content-Language: en-US
Bytes: 2506

On 26.12.2024 20:59, joes wrote:
> Am Tue, 24 Dec 2024 11:42:56 +0100 schrieb WM:

>> The sets E(n) decrease. If the sequence (E(n)) could not get empty one
>> by one then Cantor could not set up an infinite sequence using all
>> indices n of that sequence.
> The „sequence” doesn’t „get” empty. No element is empty.

The sequence does not get empty in the visible domain. That proves that 
not all indices can be applied and therefore there is no bijection with ℕ.

Regards, WM