Deutsch English Français Italiano |
<vkn7rq$3rfhc$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius <invalid@example.invalid> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Fri, 27 Dec 2024 22:57:14 +0100 Organization: A noiseless patient Spider Lines: 33 Message-ID: <vkn7rq$3rfhc$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vjv6fb$2dujf$2@dont-email.me> <b0c7449413fec43bc18e8d2d67da1c779a350bc2@i2pn2.org> <vk1cad$2srst$1@dont-email.me> <ceaaf003457afd2e381c8f115a4e691611162ffe@i2pn2.org> <vk3g0l$3cjvc$3@dont-email.me> <vk3lv1$3e9se$1@dont-email.me> <vk3vh6$3g0a3$1@dont-email.me> <vk4jfi$3k04r$4@dont-email.me> <d4d38bb75acc471a684759922b8f8d32707855a8@i2pn2.org> <vk6uu7$4f7v$1@dont-email.me> <cdd51ad73c172f40f3212801d7afd9eef8e60d47@i2pn2.org> <vk936n$khia$1@dont-email.me> <787067e5de3c455cb57389315b6821e96bcf86af@i2pn2.org> <f713f771-6cdd-44bb-90ab-7300d739f84b@tha.de> <1b6f89e7c35e4c9674af5a480e4bab6cb72e0915@i2pn2.org> <vkbalq$14tg7$2@dont-email.me> <733ce219e9d2422859035e5094a7b3e92eea9c47@i2pn2.org> <vke3bi$1q36j$2@dont-email.me> <md-cnZfuwoBJMPf6nZ2dnZfqnPGdnZ2d@giganews.com> <vkf5et$20tbj$1@dont-email.me> <BnWdnWn9ULkj0fb6nZ2dnZfqnPSdnZ2d@giganews.com> <vkikfn$2q3p8$1@dont-email.me> <vkiku8$2pt4u$4@dont-email.me> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Fri, 27 Dec 2024 22:57:14 +0100 (CET) Injection-Info: dont-email.me; posting-host="80cd5f09785a45121a55363e31e7c50c"; logging-data="4046380"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18DLBCd+ObJkr48rGnYw2On" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:VUlPP+6Nir8B4im1ioTE2YSmuVY= In-Reply-To: <vkiku8$2pt4u$4@dont-email.me> Content-Language: de-DE Bytes: 2781 Am 26.12.2024 um 05:09 schrieb Moebius: > Am 26.12.2024 um 05:02 schrieb Chris M. Thomasson: >> On 12/24/2024 4:07 PM, Ross Finlayson wrote: >>> On 12/24/2024 12:27 PM, Chris M. Thomasson wrote: > >>>> Cantor's Pairing works with any unsigned integer. >>> >>> No, it works with two copies of all the integers, [...] >> >> It works with any unsigned integer. > > It works especially with the (elements in the) two sets {0, 2, 4, ...} > and {1, 3, 5, ...}: > > n <-> n+1 . > > P := {(n, n+1) : n e {0, 2, 4, ...}} . > > Then P is {(0, 1}, (2, 3}, (4, 5}, ...}. This way we prove that {0, 2, 4, ...} ~ {1, 3, 5, ...} , and hence card {0, 2, 4, ...} = card {1, 3, 5, ...} . > . > . > . >