Deutsch   English   Français   Italiano  
<vkp0fv$b7ki$2@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Sat, 28 Dec 2024 15:03:44 +0100
Organization: A noiseless patient Spider
Lines: 20
Message-ID: <vkp0fv$b7ki$2@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vjmgdm$i9be$1@dont-email.me>
 <abf7344d-b95b-4432-8626-8356dc1dd261@att.net> <vjn9ud$mlgt$2@dont-email.me>
 <4051acc5-d00a-40d2-8ef7-cf2b91ae75b6@att.net> <vjreik$1lokm$1@dont-email.me>
 <8d69d6cd-76bc-4dc1-894e-709d044e68a1@att.net> <vjst0u$1tqvv$3@dont-email.me>
 <7356267c-491b-45c2-b86a-d40c45dfa40c@att.net> <vjufr6$29khr$3@dont-email.me>
 <4bf8a77e-4b2a-471f-9075-0b063098153f@att.net> <vjv6uv$2dra0$1@dont-email.me>
 <31180d7e-1c2b-4e2b-b8d6-e3e62f05da43@att.net> <vk1brk$2srss$7@dont-email.me>
 <bb80c6c5-04c0-4e2d-bb21-ac51aab9e252@att.net> <vk23m7$31l8v$1@dont-email.me>
 <bce1b27d-170c-4385-8938-36805c983c49@att.net> <vk693m$f52$2@dont-email.me>
 <a17eb8b6-7d11-4c59-b98c-b4d5de8358ca@att.net> <vk7dmb$7mh2$2@dont-email.me>
 <b72490c1-e61a-4c23-a3a5-f624b2c084e4@att.net> <vk8tbq$j9h1$1@dont-email.me>
 <bd7dfdc7-6471-4fe6-b078-0ca739031580@att.net> <vklumc$3htmt$1@dont-email.me>
 <c03cf79d-0572-4b19-ad92-a0d12df53db9@att.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Sat, 28 Dec 2024 15:03:44 +0100 (CET)
Injection-Info: dont-email.me; posting-host="5d0ee4217b8db9d987b3a5f773aec09b";
	logging-data="368274"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+IWNd9cPoNMidVhbIlz9eVEJXt9weFNZk="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:55oo7j9n3iJYm6ryoneRyGdrJ58=
In-Reply-To: <c03cf79d-0572-4b19-ad92-a0d12df53db9@att.net>
Content-Language: en-US
Bytes: 2505

On 27.12.2024 22:00, Jim Burns wrote:
> On 12/27/2024 5:14 AM, WM wrote:

>> They are invariable numbers like ω and ω+1.
> 
> ω is
> the set of (well.ordered) ordinals k such that
> #⟦0,k⦆ ≠ #(⟦0,k⦆∪⦃k⦄)
> (such that k is finite)

That is one interpretation. My interpretation is Cantor's original one: 
ω is the limit of the sequence 1, 2, 3, ... .

> A separate fact is that
> ⟦0,ω⦆ ≠ ⟦0,ω⦆∪⦃ω⦄

[0, ω-1] = [0,ω⦆ = ℕ =/= [0, ω]

Regards, WM