Deutsch English Français Italiano |
<vl0e3v$25vs8$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Tue, 31 Dec 2024 10:39:12 +0100 Organization: A noiseless patient Spider Lines: 16 Message-ID: <vl0e3v$25vs8$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <dc9e7638be92c4d158f238f8c042c8559cd46521@i2pn2.org> <vjjg6p$3tvsg$1@dont-email.me> <c31edc62508876748c8cf69f93ab80c0a7fd84ac@i2pn2.org> <vjka3b$1tms$3@dont-email.me> <e11a34c507a23732d83e3d0fcde7b609cdaf3ade@i2pn2.org> <vjmse3$k2go$2@dont-email.me> <069069bf23698c157ddfd9b62b9b2f632b484c40@i2pn2.org> <vjooeq$11n0g$2@dont-email.me> <2d3620a6e2a8a57d9db7a33c9d476fe03cac455b@i2pn2.org> <vjrfcc$1m1b2$1@dont-email.me> <75921cc1f17cdb691969a99e666f237cd09c0b09@i2pn2.org> <vjsrp1$1tqvv$2@dont-email.me> <25729298b142c60d5b245231984119d42d4ac089@i2pn2.org> <vko14j$53b6$3@dont-email.me> <vko1vp$5mmo$1@dont-email.me> <vko2a3$5mmo$3@dont-email.me> <vkpkbr$fnhj$2@dont-email.me> <vkraki$tpqs$3@dont-email.me> <vkshm4$17741$1@dont-email.me> <vksjeq$17bf0$1@dont-email.me> <vktm9b$1hmvu$1@dont-email.me> <09ef32dfb3944d321e15e1383820166a2082d5cb@i2pn2.org> <vkv4p3$1qhgq$1@dont-email.me> <6d7fb8f4346eb09ea7ccdff45e8ff3d0c4a45ab0@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Tue, 31 Dec 2024 10:39:12 +0100 (CET) Injection-Info: dont-email.me; posting-host="718125353b5203194fcbb6b7554b162c"; logging-data="2293640"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+SeIG5orPkaeaPphVW0kiieRr9sUVbvo8=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:mg2BVrrd/SbFNZ55sxI6ZVt5fXo= Content-Language: en-US In-Reply-To: <6d7fb8f4346eb09ea7ccdff45e8ff3d0c4a45ab0@i2pn2.org> Bytes: 2479 On 31.12.2024 09:56, joes wrote: > Am Mon, 30 Dec 2024 22:53:38 +0100 schrieb WM: Correction: The collection of definable natural numbers (FISONs) is closed under multiplication. In fact it will never reach let alone surpass any definable fraction of ℕ. > Now what is the multiplication of a FISON? Every FISON is less than 1 % of ℕ because by expanding it by a factor 100 the situations remains the same - forever. Gruß, WM