Deutsch   English   Français   Italiano  
<vlaqqb$cfb1$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Sat, 4 Jan 2025 09:17:16 +0100
Organization: A noiseless patient Spider
Lines: 13
Message-ID: <vlaqqb$cfb1$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vk693m$f52$2@dont-email.me>
 <a17eb8b6-7d11-4c59-b98c-b4d5de8358ca@att.net> <vk7dmb$7mh2$2@dont-email.me>
 <b72490c1-e61a-4c23-a3a5-f624b2c084e4@att.net> <vk8tbq$j9h1$1@dont-email.me>
 <bd7dfdc7-6471-4fe6-b078-0ca739031580@att.net> <vklumc$3htmt$1@dont-email.me>
 <c03cf79d-0572-4b19-ad92-a0d12df53db9@att.net> <vkp0fv$b7ki$2@dont-email.me>
 <b125beff-cb76-4e5a-b8b8-e4c57ff468e9@att.net> <vkr8j0$t59a$1@dont-email.me>
 <98519289-0542-40ce-886e-b50b401ef8cf@att.net> <vksicn$16oaq$7@dont-email.me>
 <8e95dfce-05e7-4d31-b8f0-43bede36dc9b@att.net> <vl1ckt$2b4hr$1@dont-email.me>
 <53d93728-3442-4198-be92-5c9abe8a0a72@att.net> <vl5tds$39tut$1@dont-email.me>
 <9c18a839-9ab4-4778-84f2-481c77444254@att.net> <vl87n4$3qnct$1@dont-email.me>
 <6db7afa9-f1e1-4d2b-beba-a5fc7a8b8686@att.net> <vl952v$3vk28$1@dont-email.me>
 <e97ca358-cc9c-4f6f-a93b-3459821fc4aa@att.net> <vl9ev9$1u2d$1@dont-email.me>
 <bde626a3aade47fe039545590ee6319ebc21a8dd@i2pn2.org>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Sat, 04 Jan 2025 09:17:16 +0100 (CET)
Injection-Info: dont-email.me; posting-host="a9900a24fbb665a6026452318742a554";
	logging-data="408929"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX19M9mJ4JF5OT6dbQI2//67GS50T1Lwuhp0="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:OFJKOK2fMfdlP4OAX5L9elcZRJQ=
Content-Language: en-US
In-Reply-To: <bde626a3aade47fe039545590ee6319ebc21a8dd@i2pn2.org>
Bytes: 2409

On 03.01.2025 21:29, joes wrote:
> Am Fri, 03 Jan 2025 20:48:57 +0100 schrieb WM:

>> But removing every ordinal that you can define (and all its
>> predecessors) from ℕ leaves almost all ordinals in ℕ.
> No, N is exactly the set of those numbers.

∀n ∈ ℕ_def: |ℕ \ {1, 2, 3, ..., n}| = ℵo contradicts your opinion. Show 
that it is wrong.

Regards, WM