Deutsch English Français Italiano |
<vldpj7$vlah$7@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Sun, 5 Jan 2025 12:14:47 +0100 Organization: A noiseless patient Spider Lines: 14 Message-ID: <vldpj7$vlah$7@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <bce1b27d-170c-4385-8938-36805c983c49@att.net> <vk693m$f52$2@dont-email.me> <a17eb8b6-7d11-4c59-b98c-b4d5de8358ca@att.net> <vk7dmb$7mh2$2@dont-email.me> <b72490c1-e61a-4c23-a3a5-f624b2c084e4@att.net> <vk8tbq$j9h1$1@dont-email.me> <bd7dfdc7-6471-4fe6-b078-0ca739031580@att.net> <vklumc$3htmt$1@dont-email.me> <c03cf79d-0572-4b19-ad92-a0d12df53db9@att.net> <vkp0fv$b7ki$2@dont-email.me> <b125beff-cb76-4e5a-b8b8-e4c57ff468e9@att.net> <vkr8j0$t59a$1@dont-email.me> <98519289-0542-40ce-886e-b50b401ef8cf@att.net> <vksicn$16oaq$7@dont-email.me> <8e95dfce-05e7-4d31-b8f0-43bede36dc9b@att.net> <vl1ckt$2b4hr$1@dont-email.me> <53d93728-3442-4198-be92-5c9abe8a0a72@att.net> <vl5tds$39tut$1@dont-email.me> <9c18a839-9ab4-4778-84f2-481c77444254@att.net> <vl87n4$3qnct$1@dont-email.me> <8ef20494f573dc131234363177017bf9d6b647ee@i2pn2.org> <vl95ks$3vk27$2@dont-email.me> <vl9ldf$3796$1@dont-email.me> <vlaskd$cr0l$2@dont-email.me> <vlc68u$k8so$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Sun, 05 Jan 2025 12:14:48 +0100 (CET) Injection-Info: dont-email.me; posting-host="cfe6170884cd9660d3ba2d6ea153e630"; logging-data="1037649"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/ivXclm7m8DJLAM7kCzlOox7tOf2tHUNY=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:aLJawuhSWyvqdGHjezyYgl1NjIQ= In-Reply-To: <vlc68u$k8so$1@dont-email.me> Content-Language: en-US Bytes: 2497 On 04.01.2025 21:38, Chris M. Thomasson wrote: > For me, there are infinitely many natural numbers, period... Do you > totally disagree? No. There are actually infinitely many natural numbers. All can be removed from ℕ, but only collectively ℕ \ {1, 2, 3, ...} = { }. It is impossible to remove the numbers individually ∀n ∈ ℕ_def: |ℕ \ {1, 2, 3, ..., n}| = ℵo. Therefore the definable numbers are onl a potentially infinite set. Regards, WM