Deutsch   English   Français   Italiano  
<vldpj7$vlah$7@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Sun, 5 Jan 2025 12:14:47 +0100
Organization: A noiseless patient Spider
Lines: 14
Message-ID: <vldpj7$vlah$7@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
 <bce1b27d-170c-4385-8938-36805c983c49@att.net> <vk693m$f52$2@dont-email.me>
 <a17eb8b6-7d11-4c59-b98c-b4d5de8358ca@att.net> <vk7dmb$7mh2$2@dont-email.me>
 <b72490c1-e61a-4c23-a3a5-f624b2c084e4@att.net> <vk8tbq$j9h1$1@dont-email.me>
 <bd7dfdc7-6471-4fe6-b078-0ca739031580@att.net> <vklumc$3htmt$1@dont-email.me>
 <c03cf79d-0572-4b19-ad92-a0d12df53db9@att.net> <vkp0fv$b7ki$2@dont-email.me>
 <b125beff-cb76-4e5a-b8b8-e4c57ff468e9@att.net> <vkr8j0$t59a$1@dont-email.me>
 <98519289-0542-40ce-886e-b50b401ef8cf@att.net> <vksicn$16oaq$7@dont-email.me>
 <8e95dfce-05e7-4d31-b8f0-43bede36dc9b@att.net> <vl1ckt$2b4hr$1@dont-email.me>
 <53d93728-3442-4198-be92-5c9abe8a0a72@att.net> <vl5tds$39tut$1@dont-email.me>
 <9c18a839-9ab4-4778-84f2-481c77444254@att.net> <vl87n4$3qnct$1@dont-email.me>
 <8ef20494f573dc131234363177017bf9d6b647ee@i2pn2.org>
 <vl95ks$3vk27$2@dont-email.me> <vl9ldf$3796$1@dont-email.me>
 <vlaskd$cr0l$2@dont-email.me> <vlc68u$k8so$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Sun, 05 Jan 2025 12:14:48 +0100 (CET)
Injection-Info: dont-email.me; posting-host="cfe6170884cd9660d3ba2d6ea153e630";
	logging-data="1037649"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/ivXclm7m8DJLAM7kCzlOox7tOf2tHUNY="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:aLJawuhSWyvqdGHjezyYgl1NjIQ=
In-Reply-To: <vlc68u$k8so$1@dont-email.me>
Content-Language: en-US
Bytes: 2497

On 04.01.2025 21:38, Chris M. Thomasson wrote:

> For me, there are infinitely many natural numbers, period... Do you 
> totally disagree? 

No. There are actually infinitely many natural numbers. All can be 
removed from ℕ, but only collectively
ℕ \ {1, 2, 3, ...} = { }.
It is impossible to remove the numbers individually
∀n ∈ ℕ_def: |ℕ \ {1, 2, 3, ..., n}| = ℵo.
Therefore the definable numbers are onl a potentially infinite set.

Regards, WM