| Deutsch English Français Italiano |
|
<vlflgl$1f1dn$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: Moebius <invalid@example.invalid>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
(extra-ordinary)
Date: Mon, 6 Jan 2025 05:17:25 +0100
Organization: A noiseless patient Spider
Lines: 82
Message-ID: <vlflgl$1f1dn$2@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
<8e95dfce-05e7-4d31-b8f0-43bede36dc9b@att.net> <vl1ckt$2b4hr$1@dont-email.me>
<53d93728-3442-4198-be92-5c9abe8a0a72@att.net> <vl5tds$39tut$1@dont-email.me>
<9c18a839-9ab4-4778-84f2-481c77444254@att.net> <vl87n4$3qnct$1@dont-email.me>
<8ef20494f573dc131234363177017bf9d6b647ee@i2pn2.org>
<vl95ks$3vk27$2@dont-email.me> <vl9ldf$3796$1@dont-email.me>
<vlaskd$cr0l$2@dont-email.me> <vldqc1$2i2n$1@news.muc.de>
<vlee3l$14esf$2@dont-email.me> <vlefsk$si8$1@news.muc.de>
Reply-To: invalid@example.invalid
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Mon, 06 Jan 2025 05:17:25 +0100 (CET)
Injection-Info: dont-email.me; posting-host="e23192f831a08e78192f0720c17fed36";
logging-data="1541559"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18Wi+5MBQ3ApFHlHWq+QpqS"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:wMSHoRnXHPPE0/VtMbKPNj822pc=
Content-Language: de-DE
In-Reply-To: <vlefsk$si8$1@news.muc.de>
Bytes: 4480
Am 05.01.2025 um 18:35 schrieb Alan Mackenzie:
> WM <wolfgang.mueckenheim@tha.de> wrote:
>> On 05.01.2025 12:28, Alan Mackenzie wrote:
>
>>> The only people who talk about "potential" and "actual" infinity are
>>> non-mathematicians who lack understanding, and [...]
>> All mathematicians whom you have disqualified above are genuine
>> mathematicians.
Yes, but you are NOT, Mückenheim, and it shows!
Even worse, you are a mathematical crank.
Example:
>> [...] all finite initial segments of natural numbers FISONs {1, 2, 3,
>> ..., n} cover less than 1 % of ℕ.
>
> That is a thoroughly unmathematical statement. To talk about 1% of an
> infinite set is meaningless. To say "cover" in the context of set
> theory rather than topological spaces is inappropriate. Above all, to
> say "all finite initial segments" is unmathematical, since what is meant
> is not the set of FISONs, but the union of FISONs. Finally, it is
> wrong, absurdly wrong. The union of all FISONs _is_ N.
Indeed.
>> Proof:
As if.
> No, not a mathematical proof. You have never studied maths to degree
> level, and have no idea what a mathematical proof looks like. [...]
Right.
> [...] The set of FISONs does indeed "cover"
> N, in the sense that their union is equal to N. A proof of this is
> trivial, well within the understanding of a school student studying
> maths.
Satz: U{A(k) : k e IN} = IN.
Beweis: Für alle n e IN ist n e A(n+1). D. h. für alle n e IN gibt es
ein k e IN mit n e A(k). Also gilt für alle n e IN: n e U{A(k) : k e
IN}. D. h. IN c U{A(k) : k e IN}. Da aber (wegen An e IN: A(n) c IN)
auch U{A(k) : k e IN} c IN ist, gilt U{A(k) : k e IN} = IN. qed
>> The set of FISONs is only potentially infinite, not <bla>
There are no "potentially infinite" sets. Actually, only finite and
infinite sets (in the context of set theory).
> This "potentially" and "actually" infinite has led you astray, away from
> the truth. They are solely historical notions, with no place in modern
> [classical] mathematics [i. e. set theory + classical logic --moebius].
> The plain fact is that the set of FISONs is infinite [...]
Indeed!
Satz: "Die Menge aller FISONs ist abzählbar unendlich."
Beweis:
Es gibt eine Bijektion zwischen IN und der Menge aller FISONs {A(n) : n
e IN} [mit A(n) := {m e IN : m < n} (n e IN)]. Nämlich die Abbildung f:
IN --> {A(n) : n e IN}, die durch f(n) = A(n) für alle n e IN, definiert
ist. f ist trivialerweise surjektiv. Die Injektivität von f ergibt sich
aus f(n1) = A(n1) = {m e IN : m < n1} c_echt {m e IN : m < n2} = A(n2) =
f(2) für n1,n2 e IN mit n1 < n2. Denn daraus folgt f(n1) =/= f(2) für n1
=/= n2.
Wir haben also IN ~ {A(n) : n e IN} gezeigt.
Daraus folgt card(IN) = card({A(n) : n e IN}) und mit card(IN) = aleph_0
schließlich card({A(n) : n e IN}) = aleph_0. qed
..
..
..