| Deutsch English Français Italiano |
|
<vllg47$2n0uj$3@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Wed, 8 Jan 2025 10:22:15 +0100 Organization: A noiseless patient Spider Lines: 29 Message-ID: <vllg47$2n0uj$3@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <bd7dfdc7-6471-4fe6-b078-0ca739031580@att.net> <vklumc$3htmt$1@dont-email.me> <c03cf79d-0572-4b19-ad92-a0d12df53db9@att.net> <vkp0fv$b7ki$2@dont-email.me> <b125beff-cb76-4e5a-b8b8-e4c57ff468e9@att.net> <vkr8j0$t59a$1@dont-email.me> <98519289-0542-40ce-886e-b50b401ef8cf@att.net> <vksicn$16oaq$7@dont-email.me> <8e95dfce-05e7-4d31-b8f0-43bede36dc9b@att.net> <vl1ckt$2b4hr$1@dont-email.me> <53d93728-3442-4198-be92-5c9abe8a0a72@att.net> <vl5tds$39tut$1@dont-email.me> <9c18a839-9ab4-4778-84f2-481c77444254@att.net> <vl87n4$3qnct$1@dont-email.me> <8ef20494f573dc131234363177017bf9d6b647ee@i2pn2.org> <vl95ks$3vk27$2@dont-email.me> <vl9ldf$3796$1@dont-email.me> <vlaskd$cr0l$2@dont-email.me> <vlc68u$k8so$1@dont-email.me> <vldpj7$vlah$7@dont-email.me> <a8b010b748782966268688a38b58fe1a9b4cc087@i2pn2.org> <vlei6e$14nve$1@dont-email.me> <66868399-5c4b-4816-9a0c-369aaa824553@att.net> <vlir7p$24c51$1@dont-email.me> <412770ca-7386-403f-b7c2-61f671d8a667@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Wed, 08 Jan 2025 10:22:15 +0100 (CET) Injection-Info: dont-email.me; posting-host="34561df421edfb0b19ad775a8384d85f"; logging-data="2851795"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19cGhGz1G/r6yN3Hn878cOW4ZSolK9eT7M=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:q5Aj9ZKs/ThMExXzSbm10aj3DV0= In-Reply-To: <412770ca-7386-403f-b7c2-61f671d8a667@att.net> Content-Language: en-US Bytes: 2847 On 08.01.2025 06:45, Jim Burns wrote: > On 1/7/2025 4:13 AM, WM wrote: >> On 06.01.2025 23:43, Jim Burns wrote: > >>> k ∈ ℕ ⇒ k+1 ∈ ℕ >>> is true for both the darkᵂᴹ and the visibleᵂᴹ. >> >> One exception exists: ω-1. > > No. > ω-1 does not exist, darkᵂᴹ or visibleᵂᴹ, > because > ⦃k: k < ω ≤ k+1⦄ = ⦃⦄ If ω exists, then ω-1 exists. Then your claim is wrong. > > ⎛ Assume otherwise. > ⎜ Assume ω-1 exists. > ⎜ ω-1 < ω > ⎜ ¬∃ᵒʳᵈψ: ω-1 < ψ < ω > ⎜ > ⎜ However, > ⎜ ω-1 ∉ ⦃⦄ = ⦃k: k < ω ≤ k+1⦄ ⦃⦄ = ⦃k: k < ω ≤ k+1⦄ is a wrong presupposition. ⦃k: k < ω ≤ k+1⦄ has one element. It is dark like ω. Regards, WM