| Deutsch English Français Italiano |
|
<vlmscv$2vgqf$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Wed, 8 Jan 2025 22:57:52 +0100 Organization: A noiseless patient Spider Lines: 52 Message-ID: <vlmscv$2vgqf$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <b125beff-cb76-4e5a-b8b8-e4c57ff468e9@att.net> <vkr8j0$t59a$1@dont-email.me> <98519289-0542-40ce-886e-b50b401ef8cf@att.net> <vksicn$16oaq$7@dont-email.me> <8e95dfce-05e7-4d31-b8f0-43bede36dc9b@att.net> <vl1ckt$2b4hr$1@dont-email.me> <53d93728-3442-4198-be92-5c9abe8a0a72@att.net> <vl5tds$39tut$1@dont-email.me> <9c18a839-9ab4-4778-84f2-481c77444254@att.net> <vl87n4$3qnct$1@dont-email.me> <8ef20494f573dc131234363177017bf9d6b647ee@i2pn2.org> <vl95ks$3vk27$2@dont-email.me> <vl9ldf$3796$1@dont-email.me> <vlaskd$cr0l$2@dont-email.me> <vlc68u$k8so$1@dont-email.me> <vldpj7$vlah$7@dont-email.me> <a8b010b748782966268688a38b58fe1a9b4cc087@i2pn2.org> <vlei6e$14nve$1@dont-email.me> <66868399-5c4b-4816-9a0c-369aaa824553@att.net> <vlir7p$24c51$1@dont-email.me> <412770ca-7386-403f-b7c2-61f671d8a667@att.net> <vllg47$2n0uj$3@dont-email.me> <vllm44$2oeeq$1@dont-email.me> <vlm2fv$2qk9u$2@dont-email.me> <59af1502-0bc9-4266-b556-6164edb6a8d4@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Wed, 08 Jan 2025 22:57:52 +0100 (CET) Injection-Info: dont-email.me; posting-host="34561df421edfb0b19ad775a8384d85f"; logging-data="3130191"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+DvRRBzj3YcNTS/cUQxe6GEoeWHkEf0fc=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:8QImoACU1anbOCs0eTCnuCQX0Zk= Content-Language: en-US In-Reply-To: <59af1502-0bc9-4266-b556-6164edb6a8d4@att.net> Bytes: 3430 On 08.01.2025 21:07, Jim Burns wrote: > On 1/8/2025 9:35 AM, WM wrote: >> On 08.01.2025 12:04, FromTheRafters wrote: >>> WM formulated on Wednesday : > >>>> If ω exists, then ω-1 exists. >>> >>> Wrong. >> >> A set like ℕ has a fixed number of elements. > > Yes. |ℕ| is invariable. |ℕ| = |ℕ|/2 is wrong. > Our sets do not change. > Our set ℕ does not change. > >> If ω-1 does not exist, >> what is the fixed border of existence? > > Membership in ℕ is determined by ℕ.rule.compliance, > not by position relative to a border.element. > > Each object complying with the ℕ.rule is in ℕ > Each object not.complying is not.in ℕ The rule is for n there is n+1. But the successor is not created but does exist. How far do successors reach? Why do they not reach to ω-1? Where do they cease before? > > Compliance and non-compliance do not change. > Membership does not change. Then tell me if n = 7 exists and n = ω-1 does not exist where the border lies. > > No element is the border.element > because > each element is smaller.than another, fuller element, > and so, not on the border. "And so on" can only happen, when the elements are created. Potential infinity. > > Which elements are in ℕ doesn't change. Then tell me if n = 7 exists and n = ω-1 does not exist where the border lies. Regards, WM