| Deutsch English Français Italiano |
|
<vlo57i$39hil$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Thu, 9 Jan 2025 10:34:42 +0100 Organization: A noiseless patient Spider Lines: 12 Message-ID: <vlo57i$39hil$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vkr8j0$t59a$1@dont-email.me> <98519289-0542-40ce-886e-b50b401ef8cf@att.net> <vksicn$16oaq$7@dont-email.me> <8e95dfce-05e7-4d31-b8f0-43bede36dc9b@att.net> <vl1ckt$2b4hr$1@dont-email.me> <53d93728-3442-4198-be92-5c9abe8a0a72@att.net> <vl5tds$39tut$1@dont-email.me> <9c18a839-9ab4-4778-84f2-481c77444254@att.net> <vl87n4$3qnct$1@dont-email.me> <8ef20494f573dc131234363177017bf9d6b647ee@i2pn2.org> <vl95ks$3vk27$2@dont-email.me> <vl9ldf$3796$1@dont-email.me> <vlaskd$cr0l$2@dont-email.me> <vlc68u$k8so$1@dont-email.me> <vldpj7$vlah$7@dont-email.me> <a8b010b748782966268688a38b58fe1a9b4cc087@i2pn2.org> <vlei6e$14nve$1@dont-email.me> <66868399-5c4b-4816-9a0c-369aaa824553@att.net> <vlir7p$24c51$1@dont-email.me> <412770ca-7386-403f-b7c2-61f671d8a667@att.net> <vllg47$2n0uj$3@dont-email.me> <b51a409b-8bf3-4cdb-9093-c6ed7c16eb15@att.net> <vlm27g$2qk9u$1@dont-email.me> <15db3fd56d5bb6e7fc30da0a4ad6931994820110@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Thu, 09 Jan 2025 10:34:42 +0100 (CET) Injection-Info: dont-email.me; posting-host="66e52629124dad02c7713fc8137579e3"; logging-data="3458645"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/PpwE59Y9ignHsJX8Aty1gpGp1pIQouPc=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:MLWMpbYeexTOF1JqooBjto/NcE0= In-Reply-To: <15db3fd56d5bb6e7fc30da0a4ad6931994820110@i2pn2.org> Content-Language: en-US Bytes: 2449 On 09.01.2025 00:44, joes wrote: > Am Wed, 08 Jan 2025 15:31:13 +0100 schrieb WM: >> (Losing all numbers but keeping >> infinitely many can only be possible if new numbers are acquired.) > No, this isn't even the case. The infinite(!) intersection is empty. Empty intersection means that all numbers of the contents have become indices k of the endsegments E(k). What remains in the always infinite E(k)? Regards, WM