| Deutsch English Français Italiano |
|
<vlof4t$21qd0$1@solani.org> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!3.eu.feeder.erje.net!feeder.erje.net!weretis.net!feeder8.news.weretis.net!reader5.news.weretis.net!news.solani.org!.POSTED!not-for-mail From: Mild Shock <janburse@fastmail.fm> Newsgroups: sci.logic Subject: How to make cyclic terms (Was: A miraculous match?) Date: Thu, 9 Jan 2025 13:23:57 +0100 Message-ID: <vlof4t$21qd0$1@solani.org> References: <vlkfq7$1vh4j$1@solani.org> <vlkrge$2dkpc$1@dont-email.me> <vllgli$2039r$1@solani.org> <vlmdk8$2dkpd$6@dont-email.me> <vlme6h$2dkpc$3@dont-email.me> <vlo9os$2dkpd$11@dont-email.me> <vloa2b$2dkpd$12@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 9 Jan 2025 12:23:57 -0000 (UTC) Injection-Info: solani.org; logging-data="2156960"; mail-complaints-to="abuse@news.solani.org" User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:128.0) Gecko/20100101 Firefox/128.0 SeaMonkey/2.53.20 Cancel-Lock: sha1:/8quoHJbgIMiH1/lZbgNYgBNuZM= X-User-ID: eJwFwQkBwDAIA0BL0JKUyeH1L2F3uFTWM4KGxRIxayw3kS73cZuumGGcffGyOL1fSgHNoxmm6Rj1vSeP/ICNFn8= In-Reply-To: <vloa2b$2dkpd$12@dont-email.me> Bytes: 2293 Lines: 33 See here: A Modality for Recursion Hiroshi Nakano - 2000 - Zitiert von: 237 https://www602.math.ryukoku.ac.jp/~nakano/papers/modality-lics00.pdf Even if you disband cyclic terms in your model, like if you adhere to a strict Herband model. If the Herband model has an equality which is a congruence relation ≌. Nakano's paper contains an inference rule for a congruence relation ≌. When you have such a congruence relation, you can of course derive things like for example for a certain exotic recursive type C, that the following holds: C ≌ C -> A You can then produce the Curry Paradox in simple types with congruence. And then ultimately derive: |- (λx.x x)(λx.x x): A As in Proposition 2 of Nakano's paper. Julio Di Egidio schrieb: >> (But I still wouldn't know how to create a cyclic term proper in Coq >> or in fact in any total functional language, despite the mechanism >> underlying conversion/definitional equality is logical unification, >> and we can even somewhat access it in Coq, via the definition of >> `eq`/reflexivity.)