Deutsch   English   Français   Italiano  
<vlohk3$3cap7$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Thu, 9 Jan 2025 14:06:11 +0100
Organization: A noiseless patient Spider
Lines: 19
Message-ID: <vlohk3$3cap7$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
 <8e95dfce-05e7-4d31-b8f0-43bede36dc9b@att.net> <vl1ckt$2b4hr$1@dont-email.me>
 <53d93728-3442-4198-be92-5c9abe8a0a72@att.net> <vl5tds$39tut$1@dont-email.me>
 <9c18a839-9ab4-4778-84f2-481c77444254@att.net> <vl87n4$3qnct$1@dont-email.me>
 <8ef20494f573dc131234363177017bf9d6b647ee@i2pn2.org>
 <vl95ks$3vk27$2@dont-email.me> <vl9ldf$3796$1@dont-email.me>
 <vlaskd$cr0l$2@dont-email.me> <vlc68u$k8so$1@dont-email.me>
 <vldpj7$vlah$7@dont-email.me>
 <a8b010b748782966268688a38b58fe1a9b4cc087@i2pn2.org>
 <vlei6e$14nve$1@dont-email.me> <66868399-5c4b-4816-9a0c-369aaa824553@att.net>
 <vlir7p$24c51$1@dont-email.me> <412770ca-7386-403f-b7c2-61f671d8a667@att.net>
 <vllg47$2n0uj$3@dont-email.me> <vllm44$2oeeq$1@dont-email.me>
 <vlm2fv$2qk9u$2@dont-email.me> <59af1502-0bc9-4266-b556-6164edb6a8d4@att.net>
 <vlmscv$2vgqf$1@dont-email.me>
 <9a22a29bfd5af29db5bad5f3cae537665b8dafd7@i2pn2.org>
 <vlochd$3akpm$2@dont-email.me> <vlofbp$3c074$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 09 Jan 2025 14:06:12 +0100 (CET)
Injection-Info: dont-email.me; posting-host="a1411fda0edf1a6405e84a2254264e67";
	logging-data="3549991"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+8b7N7U6wiC9+k6FqDdUe0K9sA4EhEPSk="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:XxT3p18YZj3v7nIll3PZLC8lcrs=
In-Reply-To: <vlofbp$3c074$1@dont-email.me>
Content-Language: en-US
Bytes: 2792

On 09.01.2025 13:27, FromTheRafters wrote:
> WM wrote :
>> On 09.01.2025 01:07, joes wrote:
>>> Am Wed, 08 Jan 2025 22:57:52 +0100 schrieb WM:
>>
>>>> The rule is for n there is n+1. But the successor is not created but
>>>> does exist. How far do successors reach? Why do they not reach to ω-1?
>>>> Where do they cease before?
>>> They don't cease. They simply aren't in the same league, if you will.
>>
>> Cantor will. Every set of numbers of the first and second number class 
>> has a smallest element. Hence they all are on the ordinal line.
> 
> Zero is the smallest in the natural number class, omega is the smallest 
> of the infinite number class. Neither has a predecessor in its class.

Are the natural numbers fixed or do they evolve?

Regards, WM