Deutsch   English   Français   Italiano  
<vlpv16$3kemo$2@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: Moebius <invalid@example.invalid>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Fri, 10 Jan 2025 03:01:10 +0100
Organization: A noiseless patient Spider
Lines: 45
Message-ID: <vlpv16$3kemo$2@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vl1ckt$2b4hr$1@dont-email.me>
 <53d93728-3442-4198-be92-5c9abe8a0a72@att.net> <vl5tds$39tut$1@dont-email.me>
 <9c18a839-9ab4-4778-84f2-481c77444254@att.net> <vl87n4$3qnct$1@dont-email.me>
 <8ef20494f573dc131234363177017bf9d6b647ee@i2pn2.org>
 <vl95ks$3vk27$2@dont-email.me> <vl9ldf$3796$1@dont-email.me>
 <vlaskd$cr0l$2@dont-email.me> <vlc68u$k8so$1@dont-email.me>
 <vldpj7$vlah$7@dont-email.me>
 <a8b010b748782966268688a38b58fe1a9b4cc087@i2pn2.org>
 <vlei6e$14nve$1@dont-email.me> <66868399-5c4b-4816-9a0c-369aaa824553@att.net>
 <vlir7p$24c51$1@dont-email.me> <417ff6da-86ee-4b3a-b07a-9c6a8eb31368@att.net>
 <vllfof$2n0uj$2@dont-email.me> <07258ab9-eee1-4aae-902a-ba39247d5942@att.net>
 <vlmst2$2vjr0$3@dont-email.me> <vlo6g6$3a9st$1@dont-email.me>
 <vloss8$3ecjr$2@dont-email.me> <vlpe3b$3hn08$1@dont-email.me>
 <vlpsc6$3kemp$1@dont-email.me> <vlpsii$3keea$1@dont-email.me>
 <vlpu46$3kemp$6@dont-email.me> <vlpu8r$3kemp$8@dont-email.me>
Reply-To: invalid@example.invalid
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Fri, 10 Jan 2025 03:01:10 +0100 (CET)
Injection-Info: dont-email.me; posting-host="e55a72decad5857fdf1d7f2890a6564b";
	logging-data="3816152"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX19/SQLacmYRD15rnD7BZ3B0"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:SSOyAoyy7tkzIxRBIas9P/TUlZ4=
Content-Language: de-DE
In-Reply-To: <vlpu8r$3kemp$8@dont-email.me>
Bytes: 3446

Am 10.01.2025 um 02:48 schrieb Moebius:
> Am 10.01.2025 um 02:45 schrieb Moebius:
>> Am 10.01.2025 um 02:19 schrieb Chris M. Thomasson:
>>> On 1/9/2025 5:15 PM, Moebius wrote:
>>>> Am 09.01.2025 um 22:12 schrieb Chris M. Thomasson:
>>>>> On 1/9/2025 8:18 AM, WM wrote:
>>>>>> On 09.01.2025 10:56, FromTheRafters wrote:
>>>>>>> WM explained :
>>>>>>
>>>>>>>> The set {1, 2, 3, ...} is smaller by one element than the set 
>>>>>>>> {0, 1, 2, 3, ...}.
>>>>>>>
>>>>>>> Both sets are equal in size
>>>>>>
>>>>>> No. Both sets appear equal (although everybody can see that they 
>>>>>> are not) when measured by an insufficient tool.
> 
> Hint: WM here meant (of course): "Both sets appear equal IN SIZE ..."

Hint@WM: The size of {1, 2, 3, ...} EQUALS the size of {0, 1, 2, 3, ...} 
when "measured" by the "tool" /equivalence/.

See: https://www.britannica.com/science/set-theory/Equivalent-sets

____________________________________________________________________

Hint: Using Zermelo's definition of the natural numbers we have 1 = {0}, 
2 = {1}, 3 = {2}, 4 = {3}, ...

And hence {1, 2, 3, 4, ...} = {{0}, {1}, {2}, {3}, ...}

If we NOW compare

                  {{0}, {1}, {2}, {3}, ...}       (= {1, 2, 3, 4, ...})
with
                  { 0 ,  1 ,  2 ,  3 , ...} ,

does ist STILL make sense to claim "everybody can see that they are not 
equal in size"?

> .
> .
> .
>