Deutsch   English   Français   Italiano  
<vlriec$4lef$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Fri, 10 Jan 2025 17:38:34 +0100
Organization: A noiseless patient Spider
Lines: 27
Message-ID: <vlriec$4lef$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vl5tds$39tut$1@dont-email.me>
 <9c18a839-9ab4-4778-84f2-481c77444254@att.net> <vl87n4$3qnct$1@dont-email.me>
 <8ef20494f573dc131234363177017bf9d6b647ee@i2pn2.org>
 <vl95ks$3vk27$2@dont-email.me> <vl9ldf$3796$1@dont-email.me>
 <vlaskd$cr0l$2@dont-email.me> <vlc68u$k8so$1@dont-email.me>
 <vldpj7$vlah$7@dont-email.me>
 <a8b010b748782966268688a38b58fe1a9b4cc087@i2pn2.org>
 <vlei6e$14nve$1@dont-email.me> <66868399-5c4b-4816-9a0c-369aaa824553@att.net>
 <vlir7p$24c51$1@dont-email.me> <412770ca-7386-403f-b7c2-61f671d8a667@att.net>
 <vllg47$2n0uj$3@dont-email.me> <b51a409b-8bf3-4cdb-9093-c6ed7c16eb15@att.net>
 <vlm27g$2qk9u$1@dont-email.me> <56517e7b-7fa0-4ea8-88f4-bbd4c385e8d2@att.net>
 <vlp4ai$3fug2$1@dont-email.me>
 <8036bca97a855105d629273e992bdd66856a7ffc@i2pn2.org>
 <vlpgk1$3i1ro$1@dont-email.me>
 <1a24df9d32ca26ee437ba898f4d7bd29d7179963@i2pn2.org>
 <vlqtbp$3tulu$4@dont-email.me>
 <f6075c3be02fc17c8a35a322411d7a256634de66@i2pn2.org>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Fri, 10 Jan 2025 17:38:36 +0100 (CET)
Injection-Info: dont-email.me; posting-host="6b007e778b24b2187a02b65e2becd479";
	logging-data="153039"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/nofoujaNtBDlQF9IJTLtnf3znwIp+HTc="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:uyQckPYU1c/uClB5NcSNLoDLwz4=
In-Reply-To: <f6075c3be02fc17c8a35a322411d7a256634de66@i2pn2.org>
Content-Language: en-US
Bytes: 3070

On 10.01.2025 14:05, joes wrote:
> Am Fri, 10 Jan 2025 11:38:49 +0100 schrieb WM:
>> On 10.01.2025 10:15, joes wrote:
>>> Am Thu, 09 Jan 2025 22:55:13 +0100 schrieb WM:
>>>> On 09.01.2025 21:17, joes wrote:
>>>>> Am Thu, 09 Jan 2025 19:25:19 +0100 schrieb WM:
>>>>
>>>>>> Losing all numbers but keeping infinitely many is impossible in
>>>>>> inclusion-monotonic sequences.
>>>>> This case doesn't occur.
>>>> Loss of all numbers is proven by the empty intersection.
>>>> Keeping infinitely many is poved by Fritsche.
>>> ...for different cases. There is no empty segment, each is infinite.
>> Without empty endsegment, not all numbers become indices.
> Not true; the sequence is infinite.

That requires that all natnumbers are indices. That requires that no 
natnumber remains as content.
> 
>> Note that bijections need all the indices. There is no limit accepted.
> An infinite bijection is not finite.

Nevertheless there is no limit, let alone an empty limit of a sequence 
of infinite sets.

Regards, WM