Deutsch English Français Italiano |
<vls4bu$7v2k$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Fri, 10 Jan 2025 22:44:31 +0100 Organization: A noiseless patient Spider Lines: 40 Message-ID: <vls4bu$7v2k$2@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vl1ckt$2b4hr$1@dont-email.me> <53d93728-3442-4198-be92-5c9abe8a0a72@att.net> <vl5tds$39tut$1@dont-email.me> <9c18a839-9ab4-4778-84f2-481c77444254@att.net> <vl87n4$3qnct$1@dont-email.me> <8ef20494f573dc131234363177017bf9d6b647ee@i2pn2.org> <vl95ks$3vk27$2@dont-email.me> <vl9ldf$3796$1@dont-email.me> <vlaskd$cr0l$2@dont-email.me> <vlc68u$k8so$1@dont-email.me> <vldpj7$vlah$7@dont-email.me> <a8b010b748782966268688a38b58fe1a9b4cc087@i2pn2.org> <vlei6e$14nve$1@dont-email.me> <66868399-5c4b-4816-9a0c-369aaa824553@att.net> <vlir7p$24c51$1@dont-email.me> <412770ca-7386-403f-b7c2-61f671d8a667@att.net> <vllg47$2n0uj$3@dont-email.me> <vllm44$2oeeq$1@dont-email.me> <vlm2fv$2qk9u$2@dont-email.me> <d1e9fb6482f30e8a4cde3db97587932cef7cb198@i2pn2.org> <vlo4vg$39hik$1@dont-email.me> <752478087f5326d955ca3ffac4e248d4f50b3ff3@i2pn2.org> <vlpj6p$3is52$1@dont-email.me> <3d37c28e07a44eaae8b450a7b19efd07e2afb8bc@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Fri, 10 Jan 2025 22:44:31 +0100 (CET) Injection-Info: dont-email.me; posting-host="a12feca4b63260bf3dc579b800add305"; logging-data="261204"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+tW83Gtc5kZIeP6QwoYG/jRxOIuXa7NiM=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:3e5I9eQazPJ8X9tGXbW9k7B2toc= Content-Language: en-US In-Reply-To: <3d37c28e07a44eaae8b450a7b19efd07e2afb8bc@i2pn2.org> Bytes: 3871 On 10.01.2025 21:30, joes wrote: > Am Thu, 09 Jan 2025 23:39:21 +0100 schrieb WM: >> On 09.01.2025 22:22, joes wrote: >>> Am Thu, 09 Jan 2025 10:30:25 +0100 schrieb WM: >>>> On 09.01.2025 00:42, joes wrote: >>>>> Am Wed, 08 Jan 2025 15:35:44 +0100 schrieb WM: >>>> >>>>>> A set like ℕ has a fixed number of elements. If ω-1 does not exist, >>>>>> what is the fixed border of existence? >>>>> It has an infinite number of elements, and that number happens to be >>>>> invariant under finite subtraction/addition. > >>>> That implies the impossibility to extract all elements of contents in >>>> order to apply them as indices. >>> No, you just need "extract/apply" infinitely many, >> which means all natural numbers. Not even one must be missing from the >> set of indices. > In particular it means there is no largest one. Relevant is only that none remains outside of the set of indices. It would make the set finite. > >>>> That destroys Cantor's approach. His sequences do not exist: >>>> "thus we get the epitome (ω) of all real algebraic numbers [...] and >>>> with respect to this order we can talk about the nth algebraic number >>>> where not a single one of this epitome (ω) has been forgotten." [E. >>>> Zermelo: "Georg Cantor – Gesammelte Abhandlungen mathematischen und >>>> philosophischen Inhalts", Springer, Berlin (1932) p. 116] >>> What does this have to do with Aleph_0? >> It means that no limits are involved but that all not yet used content >> of endsegments must become indices. Not all endsegments can be infinite. > Yes they can, because there are an infinity of them. That is wrong. Infinitely many of them can only exist when no natural natural number is missing an an index. Therefore none can remain in the content. Therefore your argument is fools crap. Regards, WM >