Deutsch   English   Français   Italiano  
<vm0a73$14qpl$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Sun, 12 Jan 2025 12:48:50 +0100
Organization: A noiseless patient Spider
Lines: 21
Message-ID: <vm0a73$14qpl$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vl9ldf$3796$1@dont-email.me>
 <vlaskd$cr0l$2@dont-email.me> <vlc68u$k8so$1@dont-email.me>
 <vldpj7$vlah$7@dont-email.me>
 <a8b010b748782966268688a38b58fe1a9b4cc087@i2pn2.org>
 <vlei6e$14nve$1@dont-email.me> <66868399-5c4b-4816-9a0c-369aaa824553@att.net>
 <vlir7p$24c51$1@dont-email.me> <417ff6da-86ee-4b3a-b07a-9c6a8eb31368@att.net>
 <vllfof$2n0uj$2@dont-email.me> <07258ab9-eee1-4aae-902a-ba39247d5942@att.net>
 <vlmst2$2vjr0$3@dont-email.me>
 <1ebbc233d6bab7878b69cae3eda48c7bbfd07f88@i2pn2.org>
 <vlo5f4$39hil$2@dont-email.me>
 <4c89380adaad983f24d5d6a75842aaabbd1adced@i2pn2.org>
 <vloule$3eqsr$1@dont-email.me>
 <ffffed23878945243684de7f2aa9aaaf29564508@i2pn2.org>
 <vlrej9$2m5k$1@dont-email.me> <d6ed4797-65e8-4004-853c-f07a37af0c11@att.net>
 <vls4j6$7v2k$3@dont-email.me>
 <adef9ec5c327614374fdc3c3cc55d7a753e28a36@i2pn2.org>
 <vltfo8$heoh$5@dont-email.me>
 <7fc40cc2dbd42016a62aa0374d545e9e787a7da3@i2pn2.org>
 <vltu35$lav6$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Sun, 12 Jan 2025 12:48:52 +0100 (CET)
Injection-Info: dont-email.me; posting-host="6e083c7ac79e21d27ea58108136c6d2b";
	logging-data="1207093"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18juesk7CpOP69wGJRclCSHdTE5vXJUaJw="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:ZAHHWrvx+BAhPbR5xbpFuc2cWe4=
Content-Language: en-US
In-Reply-To: <vltu35$lav6$1@dont-email.me>
Bytes: 2796

On 11.01.2025 15:09, FromTheRafters wrote:
> joes laid this down on his screen :
>> Am Sat, 11 Jan 2025 11:04:56 +0100 schrieb WM:

>>> If Cantor has constructed a sequence containing all even numbers of the
>>> original set ℕ, then the doubled even numbers are missing.
>> What? Doubled even numbers are also even numbers.
> 
> He's a hopeless case.

Yes, you cannot hope ever to understand the difference between potential 
and actual infinity.

In actual infinity all numbers are present. No one is missing, according 
to Cantor. None can be added.
If you multiply every number by 2, then larger even numbers than all 
hitherto present even numbers are created because the number of numbers 
remains constant but the odd numbers disappear.

Regards, WM