| Deutsch English Français Italiano |
|
<vm15pj$18v7t$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Sun, 12 Jan 2025 20:39:31 +0100 Organization: A noiseless patient Spider Lines: 20 Message-ID: <vm15pj$18v7t$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vl95ks$3vk27$2@dont-email.me> <vl9ldf$3796$1@dont-email.me> <vlaskd$cr0l$2@dont-email.me> <vlc68u$k8so$1@dont-email.me> <vldpj7$vlah$7@dont-email.me> <a8b010b748782966268688a38b58fe1a9b4cc087@i2pn2.org> <vlei6e$14nve$1@dont-email.me> <66868399-5c4b-4816-9a0c-369aaa824553@att.net> <vlir7p$24c51$1@dont-email.me> <417ff6da-86ee-4b3a-b07a-9c6a8eb31368@att.net> <vllfof$2n0uj$2@dont-email.me> <07258ab9-eee1-4aae-902a-ba39247d5942@att.net> <vlmst2$2vjr0$3@dont-email.me> <1ebbc233d6bab7878b69cae3eda48c7bbfd07f88@i2pn2.org> <vlo5f4$39hil$2@dont-email.me> <4c89380adaad983f24d5d6a75842aaabbd1adced@i2pn2.org> <vloule$3eqsr$1@dont-email.me> <ffffed23878945243684de7f2aa9aaaf29564508@i2pn2.org> <vlrej9$2m5k$1@dont-email.me> <d6ed4797-65e8-4004-853c-f07a37af0c11@att.net> <vls4j6$7v2k$3@dont-email.me> <494bfd3b-3c70-4d8d-9c70-ce917c15fc22@att.net> <vm0okb$16cq0$2@dont-email.me> <bff18686-503a-4b7b-9406-b47796f68b47@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Sun, 12 Jan 2025 20:39:32 +0100 (CET) Injection-Info: dont-email.me; posting-host="12b77b53e2dfb1366c2321c2e7d191b6"; logging-data="1342717"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/SSEo/UnbAJ8ix81Q5COZkSX9qZbjnEQw=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:D0kPD/Q6XAD+FTQbpxhI0tI/B9E= Content-Language: en-US In-Reply-To: <bff18686-503a-4b7b-9406-b47796f68b47@att.net> Bytes: 2488 On 12.01.2025 20:33, Jim Burns wrote: > On 1/12/2025 10:54 AM, WM wrote: >> No, it depends on completeness. > > It is completely true > that each natural number is a natural number and > that only natural numbers are natural numbers. and that nothing fits between them and ω. > ℕ is the set of finite ordinals. such than none can be added. Regular distances in (0, ω) multiplied by 2 remain regular distances in (0, 2ω). Regards, WM