Deutsch   English   Français   Italiano  
<vm15pj$18v7t$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Sun, 12 Jan 2025 20:39:31 +0100
Organization: A noiseless patient Spider
Lines: 20
Message-ID: <vm15pj$18v7t$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vl95ks$3vk27$2@dont-email.me>
 <vl9ldf$3796$1@dont-email.me> <vlaskd$cr0l$2@dont-email.me>
 <vlc68u$k8so$1@dont-email.me> <vldpj7$vlah$7@dont-email.me>
 <a8b010b748782966268688a38b58fe1a9b4cc087@i2pn2.org>
 <vlei6e$14nve$1@dont-email.me> <66868399-5c4b-4816-9a0c-369aaa824553@att.net>
 <vlir7p$24c51$1@dont-email.me> <417ff6da-86ee-4b3a-b07a-9c6a8eb31368@att.net>
 <vllfof$2n0uj$2@dont-email.me> <07258ab9-eee1-4aae-902a-ba39247d5942@att.net>
 <vlmst2$2vjr0$3@dont-email.me>
 <1ebbc233d6bab7878b69cae3eda48c7bbfd07f88@i2pn2.org>
 <vlo5f4$39hil$2@dont-email.me>
 <4c89380adaad983f24d5d6a75842aaabbd1adced@i2pn2.org>
 <vloule$3eqsr$1@dont-email.me>
 <ffffed23878945243684de7f2aa9aaaf29564508@i2pn2.org>
 <vlrej9$2m5k$1@dont-email.me> <d6ed4797-65e8-4004-853c-f07a37af0c11@att.net>
 <vls4j6$7v2k$3@dont-email.me> <494bfd3b-3c70-4d8d-9c70-ce917c15fc22@att.net>
 <vm0okb$16cq0$2@dont-email.me> <bff18686-503a-4b7b-9406-b47796f68b47@att.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Sun, 12 Jan 2025 20:39:32 +0100 (CET)
Injection-Info: dont-email.me; posting-host="12b77b53e2dfb1366c2321c2e7d191b6";
	logging-data="1342717"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/SSEo/UnbAJ8ix81Q5COZkSX9qZbjnEQw="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:D0kPD/Q6XAD+FTQbpxhI0tI/B9E=
Content-Language: en-US
In-Reply-To: <bff18686-503a-4b7b-9406-b47796f68b47@att.net>
Bytes: 2488

On 12.01.2025 20:33, Jim Burns wrote:
> On 1/12/2025 10:54 AM, WM wrote:

>> No, it depends on completeness.
> 
> It is completely true
> that each natural number is a natural number   and
> that only natural numbers are natural numbers.

and that nothing fits between them and ω.
> ℕ is the set of finite ordinals.

such than none can be added.

Regular distances in (0, ω) multiplied by 2 remain regular distances in 
(0, 2ω).

Regards, WM