Deutsch   English   Français   Italiano  
<vm536m$2acss$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!news.mixmin.net!news2.arglkargh.de!news.karotte.org!fu-berlin.de!uni-berlin.de!news.dfncis.de!not-for-mail
From: Thomas Koenig <tkoenig@netcologne.de>
Newsgroups: sci.physics.research
Subject: Re: Newton's Gravity
Date: 14 Jan 2025 08:06:07 GMT
Organization: A noiseless patient Spider
Lines: 18
Approved: hees@itp.uni-frankfurt.de (sci.physics.research)
Message-ID: <vm536m$2acss$1@dont-email.me>
References: <vl0q35$28cau$1@dont-email.me> <vljh6k$28t5l$1@dont-email.me>
 <ltkbcoF9g4cU1@mid.dfncis.de> <vl3tv1$2sdba$1@dont-email.me>
 <ltr619FcjgqU1@mid.dfncis.de> <vlejo4$15i8k$1@dont-email.me>
 <lu26cgFg783U1@mid.individual.net> <lu6p15F9qp8U1@mid.dfncis.de>
 <vlmd0h$2sqq9$1@dont-email.me> <vltsca$l204$1@dont-email.me>
 <vm2d31$1mbqr$1@dont-email.me>
X-Trace: news.dfncis.de 6nObixyuuO2JLwlu6UtLXQ7obPyzP71JJujPnJ/EpvIYUa6WVDmaIvBnTYVY8Kc1Bu
Cancel-Lock: sha1:V5oSagia+kvze/0ppH3gHdG6gqM= sha256:SqymMy2kHBP/CcGeXpSnkfh3l6wJlEfdTVRVMhDaCuA=
Bytes: 1827

Luigi Fortunati <fortunati.luigi@gmail.com> schrieb:

> The consequence of all this is that the gravitational force of the 
> larger body of mass M acts on the entire mass <m> of the smaller body 
> and this justifies the product m*M of Newton's formula, which 
> corresponds to the force exerted by the larger mass M on the entire 
> mass <m>.
>
> Instead, the gravitational force of the smaller body of mass <m> cannot 
> act on the entire body of mass M because M is larger

That is a non sequitur if there ever was one.  Why should this be the
case?

Think of a mass M as being divided into i smaller submasses (all
with the same mass m_part) and of a mass j of being divided into
m smaller submasses with the same mass m_part. Which submass of M
should not interact all submasses of j?