Warning: mysqli::__construct(): (HY000/1203): User howardkn already has more than 'max_user_connections' active connections in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\includes\artfuncs.php on line 21
Failed to connect to MySQL: (1203) User howardkn already has more than 'max_user_connections' active connections
Warning: mysqli::query(): Couldn't fetch mysqli in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\index.php on line 66
Article <vm55n7$2aug0$1@dont-email.me>
Deutsch   English   Français   Italiano  
<vm55n7$2aug0$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: Moebius <invalid@example.invalid>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Tue, 14 Jan 2025 09:02:47 +0100
Organization: A noiseless patient Spider
Lines: 90
Message-ID: <vm55n7$2aug0$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vldpj7$vlah$7@dont-email.me>
 <a8b010b748782966268688a38b58fe1a9b4cc087@i2pn2.org>
 <vlei6e$14nve$1@dont-email.me> <66868399-5c4b-4816-9a0c-369aaa824553@att.net>
 <vlir7p$24c51$1@dont-email.me> <417ff6da-86ee-4b3a-b07a-9c6a8eb31368@att.net>
 <vllfof$2n0uj$2@dont-email.me> <07258ab9-eee1-4aae-902a-ba39247d5942@att.net>
 <vlmst2$2vjr0$3@dont-email.me>
 <1ebbc233d6bab7878b69cae3eda48c7bbfd07f88@i2pn2.org>
 <vlo5f4$39hil$2@dont-email.me>
 <4c89380adaad983f24d5d6a75842aaabbd1adced@i2pn2.org>
 <vloule$3eqsr$1@dont-email.me>
 <ffffed23878945243684de7f2aa9aaaf29564508@i2pn2.org>
 <vlrej9$2m5k$1@dont-email.me> <d6ed4797-65e8-4004-853c-f07a37af0c11@att.net>
 <vls4j6$7v2k$3@dont-email.me> <494bfd3b-3c70-4d8d-9c70-ce917c15fc22@att.net>
 <vm0okb$16cq0$2@dont-email.me> <bff18686-503a-4b7b-9406-b47796f68b47@att.net>
 <vm15pj$18v7t$1@dont-email.me> <72142d82-0d71-460a-a1be-cadadf78c048@att.net>
 <vm3hrs$1s9ld$2@dont-email.me> <vm3ujn$219a9$1@dont-email.me>
Reply-To: invalid@example.invalid
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Tue, 14 Jan 2025 09:02:48 +0100 (CET)
Injection-Info: dont-email.me; posting-host="637db88d7b8ef9efaea5539726d204cd";
	logging-data="2456064"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18XawHo+g9Zv4A6nnZqOG35"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:zqnGFz7IIXycvNya80hcjkYx5xM=
In-Reply-To: <vm3ujn$219a9$1@dont-email.me>
Content-Language: de-DE

Am 13.01.2025 um 21:55 schrieb Chris M. Thomasson:
> On 1/13/2025 9:17 AM, WM wrote:

>> doubling of all natural numbers creates numbers larger than ω.

Idiotic nonsense.

> No. Double all of the natural numbers:
> 
> {1*2, 2*2, 3*2, 4*2, ...} = {2, 4, 6, 8, ...} .
> 
> All of those results are natural numbers. They were already there...

Indeed. (At least in the context of classical mathematics/set theory.)

Using symols:

          An e IN: n*2 e IN .   (*)

Now, by definition (of ω):

          An e IN: n < ω .

Hence (with (*)):

          An e IN: n*2 < ω .

That's why WM's claim "doubling of all natural numbers [results in] 
numbers larger than ω" is idiotic nonsense. For this -as you can see- we 
do not even have to consider "numbers larger than ω".

A simple diagram might be helpful (except for WM):

          1 < 1*2 < 3 < 2*2 < 5 < 3*2 < 7 < ... < ω .

>>> ω is first infiniteᵒʳᵈ.
>>> No infiniteᵒʳᵈ is before ω
>>> No finiteᵒʳᵈ is after ω

Indeed!

>>> distances in ⦅0,ω⦆ multiplied by 2 remain regular distances in ⦅0,ω⦆, not.in ⟦ω,2ω⦆

I guess, this should read: "not.in ⟦ω,ω2⦆".

>> Doubling of all n deletes the odd numbers 

Mückenheim, Du redest wieder mal saudummen Scheißdreck daher. Nichts 
wird "deleted", Du Depp.

Die Menge G = {n*2 e IN : n e IN} ist einfach eine (echte) Teilmenge der 
natürlichen Zahlen, die (per definitionem) genau die sog. /geraden 
(natürlichen) Zahlen/ enthält.

>> but cannot change the number of numbers,

Das wiederum ist richtig. Es gilt nämlich (wegen IN ~ G):

              |IN| = |G|
bzw.
              card(IN) = card(G) .

>> therefore creates even numbers.

Nö, die werden nicht "created", Du Depp, sondern lediglich mit Hilfe des 
sog. Aussonderungsaxioms aus der Menge der natürlichen Zahlen, IN, 
"ausgesondert": D. h. die waren vorher schon da und in IN enthalten 
(Hint: G c IN.)

Das "Aussonderungsaxiom" sichert die Existenz der Menge G = {n*2 e IN : 
n e IN}.

>> They do not fit below ω 

Doch das tun sie, weil sie als natürliche Zahlen natürlich (sic!) 
kleiner als ω sind.

Hint:         1 < 1*2 < 3 < 2*2 < 5 < 3*2 < 7 < ... < ω .

>> Remember: [no ordinal number] fits between them and ω.

In der Tat: ~Eo e ORD: An e IN: n*2 < o < ω .

..
..
..