Deutsch   English   Français   Italiano  
<vmiunr$28ckb$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: FromTheRafters <FTR@nomail.afraid.org>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
Date: Sun, 19 Jan 2025 08:29:30 -0500
Organization: Peripheral Visions
Lines: 42
Message-ID: <vmiunr$28ckb$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>   <vlrej9$2m5k$1@dont-email.me> <d6ed4797-65e8-4004-853c-f07a37af0c11@att.net> <vls4j6$7v2k$3@dont-email.me> <494bfd3b-3c70-4d8d-9c70-ce917c15fc22@att.net> <vm0okb$16cq0$2@dont-email.me> <bff18686-503a-4b7b-9406-b47796f68b47@att.net> <vm15pj$18v7t$1@dont-email.me> <72142d82-0d71-460a-a1be-cadadf78c048@att.net> <vm3hrs$1s9ld$2@dont-email.me> <812e64b1-c85c-48ac-a58c-e8955bc02f8c@att.net> <vm59g4$2b5ib$1@dont-email.me> <22b74adc-bf38-4aa4-a44f-622f0a2a5c41@att.net> <vm8u36$31v8s$5@dont-email.me> <77a1069f5c5b8f95927ed9a33ecc6374c9d0a2dd@i2pn2.org> <vmb821$3i6nm$1@dont-email.me> <da8e83072697acf06f9ca2b2946d7b9ccfcbcaac@i2pn2.org> <20e517f6-d709-46fd-83f8-04c6b4fe9f59@tha.de> <4679319ea238a03fb042ae0c4de078c1a310c8a5@i2pn2.org> <vmejlt$845r$1@dont-email.me> <320edbb95673eb535f81c16a471811fef7d0f752@i2pn2.org> <vmijvi$24teu$1@dont-email.me> <vmikvk$25bmm$1@dont-email.me> <vmilv3$24teu$3@dont-email.me>
Reply-To: erratic.howard@gmail.com
MIME-Version: 1.0
Content-Type: text/plain; charset="utf-8"; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Sun, 19 Jan 2025 14:29:32 +0100 (CET)
Injection-Info: dont-email.me; posting-host="e5555fdd772255afcd74904ebfc57623";
	logging-data="2372235"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/hR5daZOvfZ5qslve+x2WrfEUUz2PAUIE="
Cancel-Lock: sha1:vNKYgmrd+HV3UpLF72GMAmSWiBc=
X-Newsreader: MesNews/1.08.06.00-gb
X-ICQ: 1701145376
Bytes: 3399

WM formulated the question :
> On 19.01.2025 11:42, FromTheRafters wrote:
>> WM presented the following explanation :
>>> On 18.01.2025 12:03, joes wrote:
>>>> Am Fri, 17 Jan 2025 22:56:13 +0100 schrieb WM:
>>>
>>>>> Correct. If infinity is potential. set theory is wrong.
>>>> And that is why set theory doesn't talk about "potential infinity".
>>>
>>> Nevertheless it uses potential infinity.
>> 
>> No, it doesn't.
>
> Use all natnumbers individually such that none remains. Fail.

This makes no sense.

>>> All "bijections" yield the same cardinality because only the potentially 
>>> infinite parts of the sets are  applied.
>> 
>> No, it is because these bijections show that some infinite sets' sizes can 
>> be shown to be equal even if no completed count exists.
>
> They appear equal because no completed count exists.

No, they are the same size when it is shown there is at least one 
bijection. Still, no counting necessary.

> All natnumbers in bijections have ℵ₀ not applied successors.
> ∀n ∈ ℕ_def: |ℕ \ {1, 2, 3, ..., n}| = ℵo
> Only potential infinity is applied.

You mean that only finite sets are involved.

> In actual infinity all natnumbers would be applied:
> ℕ \ {1, 2, 3, ...} = { }

That is simply 'infinity' which means not finite.

> But that is not possible in bijections.

Sure it is, when they are infinite.