Deutsch   English   Français   Italiano  
<vmlgci$33ltb$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Mon, 20 Jan 2025 13:42:58 +0100
Organization: A noiseless patient Spider
Lines: 23
Message-ID: <vmlgci$33ltb$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vloule$3eqsr$1@dont-email.me>
 <ffffed23878945243684de7f2aa9aaaf29564508@i2pn2.org>
 <vlrej9$2m5k$1@dont-email.me> <d6ed4797-65e8-4004-853c-f07a37af0c11@att.net>
 <vls4j6$7v2k$3@dont-email.me> <494bfd3b-3c70-4d8d-9c70-ce917c15fc22@att.net>
 <vm0okb$16cq0$2@dont-email.me> <bff18686-503a-4b7b-9406-b47796f68b47@att.net>
 <vm15pj$18v7t$1@dont-email.me> <72142d82-0d71-460a-a1be-cadadf78c048@att.net>
 <vm3hrs$1s9ld$2@dont-email.me> <812e64b1-c85c-48ac-a58c-e8955bc02f8c@att.net>
 <vm59g4$2b5ib$1@dont-email.me> <b5040865-50e6-4297-a08c-0072e0a2cb0f@att.net>
 <vm8trc$30hqq$9@dont-email.me> <ec8c4429-b724-4ea6-ad38-80a97cf6b06c@att.net>
 <vmd6m3$3vamp$1@dont-email.me> <681bacad-63c9-45e1-ba73-4af883caae2d@att.net>
 <vmebn0$3iir$3@solani.org> <717d95ac-9342-448a-822d-793bdd08abb9@att.net>
 <vmfpg8$mj54$1@dont-email.me> <f17c3af1-c692-44c9-94f4-bcc57d3541b5@att.net>
 <vmilhh$252qj$3@dont-email.me>
 <f3dcd1edaa6ef3cd3083e6f9bdb5a5897d460d84@i2pn2.org>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Mon, 20 Jan 2025 13:42:58 +0100 (CET)
Injection-Info: dont-email.me; posting-host="ad3059a076be5126998b2dbdaa149b09";
	logging-data="3266475"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX19Scf23NvN4A5WxsOCA8EJGf3sqgETrgXQ="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:zl8zRLQS4GteEwjG/HvEKafz88s=
Content-Language: en-US
In-Reply-To: <f3dcd1edaa6ef3cd3083e6f9bdb5a5897d460d84@i2pn2.org>
Bytes: 3032

On 19.01.2025 16:05, joes wrote:
> Am Sun, 19 Jan 2025 11:52:33 +0100 schrieb WM:

>> Cantor claims this also for infinite sets: "The infinite sequence thus
>> defined has the peculiar property to contain the positive rational
>> numbers completely, and each of them only once at a determined place."
>> [G. Cantor, letter to R. Lipschitz (19 Nov 1883)]
> That's not what that means. Some infinite sets are countable, even though
> you don't "finish" them. The quote refers to a bijection.

But there is no bijection bijection without completeness: to contain the 
positive rational numbers completely.
> 
>>> There is no step from finite to infinite.
>> Not in the visible domain. But there is no loss in lossless exchange -
>> even in the dark domain. There lies your fault.
> There is only a limit, which does have different properties.

A bijection concerns pairing of all elements, no limit. And in 
particular no loss in explicitly lossless exchange.

Regards, WM