Deutsch   English   Français   Italiano  
<vms0ms$196cb$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: sobriquet <dohduhdah@yahoo.com>
Newsgroups: sci.math
Subject: =?UTF-8?B?UmU6IHjCsis0eCs1PTA=?=
Date: Thu, 23 Jan 2025 00:58:20 +0100
Organization: A noiseless patient Spider
Lines: 32
Message-ID: <vms0ms$196cb$1@dont-email.me>
References: <4mVsl7f7IEYIck3oOw7iM3AOjN8@jntp>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 23 Jan 2025 00:58:20 +0100 (CET)
Injection-Info: dont-email.me; posting-host="7a7fd45e414b4065f9f548f67689181f";
	logging-data="1350027"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+AsFQoh/4QrOnN5nwrs2T1GXW+yMzff6Q="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:ISaWyNCOgjfkmuyB+uaZmqMAgvI=
Content-Language: nl, en-US
In-Reply-To: <4mVsl7f7IEYIck3oOw7iM3AOjN8@jntp>

Op 22/01/2025 om 14:48 schreef Richard Hachel:
> x²+4x+5=0
> 
> This equation has no root, and it never will.
> 
> We can then find two roots of its mirror curve.
> 
> Let x'=-3 and x"=-1
> 
> These are not roots of this curve, but the roots of the imaginary mirror 
> curve.
> 
> What is this imaginary mirror curve?
> 
> It is the curve with equation y=-x²-4x-3
> 
> Let's look for its roots, and we find x'=-3 and x'=-1
> 
> These are the imaginary roots of x²-4x+5.
> 
> Or x'=-3(i) and x'=-1(i)
> 
> R.H.


Wolfram Alpha tells us there are two roots:

https://www.wolframalpha.com/input?i=solve+x%5E2%2B4x%2B5%3D0

Here you can see the roots:

https://www.desmos.com/3d/mpwj5h2ab8