Deutsch   English   Français   Italiano  
<vnnknt$knr7$7@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: The set of necessary FISONs
Date: Sun, 2 Feb 2025 12:25:49 +0100
Organization: A noiseless patient Spider
Lines: 32
Message-ID: <vnnknt$knr7$7@dont-email.me>
References: <vmo1bs$1rnl$1@dont-email.me> <vmvn1h$25r19$1@dont-email.me>
 <27377646-137a-4f8f-a7bb-a75707b2da96@att.net> <vn2gcf$2ouuo$2@dont-email.me>
 <d90c478d-6806-4ffe-83be-a5d7674bb5e3@att.net>
 <b82a0915-400a-4f77-9309-44eef432e9f4@att.net> <vn50eo$3kgi6$2@dont-email.me>
 <4d349964-211f-42f1-936f-81c22ae54cb5@att.net> <vn7vns$ra97$2@dont-email.me>
 <e3f89d8c-d214-453a-91f4-9023e744fed2@att.net> <vna72s$1ng1k$2@dont-email.me>
 <6e0c8ab2-402a-43a5-a348-0c727eae6a2e@att.net> <vnat4s$1s6ha$4@dont-email.me>
 <e43b1c65-4424-4e0c-9b2e-65e0e463815b@att.net> <vnconr$29v5v$1@dont-email.me>
 <87e2e677c7802c9c17df6063f340cb5857d5700b@i2pn2.org>
 <vnd4h8$2c0st$1@dont-email.me>
 <c50fde56e7e0c4cf4842d4944ea3d1917c75eb41@i2pn2.org>
 <vnfftp$2rv3t$1@dont-email.me>
 <680d4249c9bf1504231a53732ac5096184261495@i2pn2.org>
 <vngumj$34ss1$6@dont-email.me> <12a38458-bfb9-4611-9072-eadbb166c0ec@att.net>
 <vnl5ll$3ae6$3@dont-email.me> <d47ddb72-2ab1-4923-b8db-2d01777f20ab@att.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Sun, 02 Feb 2025 12:25:49 +0100 (CET)
Injection-Info: dont-email.me; posting-host="7889779fdd80798ffa0e9c506aa81a71";
	logging-data="679783"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+I74vnEb8BW6MIBsx/x+x51L/5OHwKxx8="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:xLBbPYps4e8vRoqw2Pc+ta/VTtE=
Content-Language: en-US
In-Reply-To: <d47ddb72-2ab1-4923-b8db-2d01777f20ab@att.net>
Bytes: 2999

On 01.02.2025 20:21, Jim Burns wrote:
> On 2/1/2025 7:56 AM, WM wrote:

>> There is the assumption that
>> a set with U(F(n)) = ℕ exists.
>> Without changing the union
>> we can remove every element by induction.
>> No element remains.
>> The set does not exist.
> 
> Each finiteᵒᵘʳ initial segment F(k) of ⋃{F(n)}
> can grow¹ to another initial segment F(k+1)
> which is also finiteᵒᵘʳ, and is larger than F(k),
> and is not larger than ⋃{F(n)}
> 
> {F(n}} holds each finiteᵒᵘʳ initial segment F(k)
> ⋃{F(n)} is larger than each F(k).

But all F(n) can be discarded without changing the union.
F(1) can be discarded. If F(n) can be discarded, then F(n+1) can be 
discarded.

Note: Mathematical induction is a method for proving that a statement 
P(n) is true for every natural number n that is, that the infinitely 
many cases P(0),P(1),P(2),P(3),... all hold. [Wikipedia]

Therefore if U(F(n)) = ℕ, then  { } = ℕ

Regards, WM