Deutsch   English   Français   Italiano  
<vo32p6$3393i$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: The set of necessary FISONs
Date: Thu, 6 Feb 2025 20:32:53 +0100
Organization: A noiseless patient Spider
Lines: 59
Message-ID: <vo32p6$3393i$1@dont-email.me>
References: <vmo1bs$1rnl$1@dont-email.me> <vnfftp$2rv3t$1@dont-email.me>
 <680d4249c9bf1504231a53732ac5096184261495@i2pn2.org>
 <vngumj$34ss1$6@dont-email.me> <12a38458-bfb9-4611-9072-eadbb166c0ec@att.net>
 <vnl5ll$3ae6$3@dont-email.me> <d47ddb72-2ab1-4923-b8db-2d01777f20ab@att.net>
 <vnnknt$knr7$7@dont-email.me> <e187d378-3c4a-4cf6-b57e-b8f623cac0e7@att.net>
 <vnqdi5$188h1$1@dont-email.me> <a007714a-1b8c-4d9a-9b90-64c37e2bdef3@att.net>
 <vnr2au$1cbur$2@dont-email.me> <908c8431-3d44-496c-8f5c-e33cc9554956@att.net>
 <vnsp4h$1phsq$1@dont-email.me> <faae7d60-6287-4734-87d8-091c3c3e0aa3@att.net>
 <vnva5b$2al9b$1@dont-email.me> <1ab7ff67-f1fb-4814-9d28-c883a4756097@att.net>
 <vo07bf$2fh7t$1@dont-email.me> <451804be-c49f-43ab-bca9-8a4af406d945@att.net>
 <vo0di8$2fh7t$2@dont-email.me> <aaeb6a0f-0a2c-41ee-aecd-24d1532da5eb@att.net>
 <vo1tbc$2sgko$1@dont-email.me> <11e634bd-c1d3-4d72-9e18-be6ca22b4742@att.net>
 <vo2pit$31hlr$1@dont-email.me> <aa038824-04c7-4fde-87f4-b9c3316d30a1@att.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 06 Feb 2025 20:32:54 +0100 (CET)
Injection-Info: dont-email.me; posting-host="d6ed76419b2c6cfc2864f660aebeda9e";
	logging-data="3253362"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX19IPx/e4Zgn3IN0xP5hYmMaOcq+tJLXyNs="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:55UEZCqRp2BA04lZo3ctIAmX4Cs=
Content-Language: en-US
In-Reply-To: <aa038824-04c7-4fde-87f4-b9c3316d30a1@att.net>
Bytes: 3658

On 06.02.2025 19:54, Jim Burns wrote:
> On 2/6/2025 11:55 AM, WM wrote:
>> On 06.02.2025 15:57, Jim Burns wrote:
> 
>>> The key is that  ∀ᴺ¹n: ∃ᴺ¹j′: n<j′
>>
>> The key is that
>> the set ℕ is created by induction.
> 
> The set ℕ₁ is described as having induction valid for it.

Then it is the collection ℕ_def of definable numbers.
> 
> Sets missing natural numbers and
> sets with extra, non.inducible, un.natural numbers
> are not ℕ₁

Then it is the set ℕ of all natural numbers.

You contradict yourself.
> 
>> If the set M is described as the smallest set satisfying
>> 1 ∈ M and n ∈ M ==> n+1 ∈ M
>> then ℕ\M = Ø.
> 
> ℕ₁ = ∅ satisfies that definition.

No. 1 is not in ∅,
> 
> Better:
> ℕ₁ is the emptiest set M such that
> 1 ∈ M and n ∈ M ⇒ n+1 ∈ M
> Thus:
> 1 ∈ ℕ₁ and n ∈ ℕ₁ ⇒ n+1 ∈ ℕ₁
> ∀P:(1 ∈ P and n ∈ P ⇒ n+1 ∈ P) ⇒ ℕ₁ ⊆ P
> 
> Is ℕ₁ the emptiest set M such that
> 1 ∈ M and n ∈ M ⇒ n+1 ∈ M ?

Relevant is the set of FISONs.
>> I prefer Wikipedia:
>> ∀P( P(1) /\ ∀k(P(k) ==> P(k+1)) ==> ∀n (P(n)).
> 
> That's intended to be part of the definition of ℕ₁

As well it is the definition of the collection of all FISONs.
> 
> Which is curious, when one considers that
> ℕ₁ appears nowhere in it.

The axiom of induction holds for all predicates P which satisfy induction.

If the set M is described as the smallest set satisfying
F(1) ∈ M and F(n) ∈ M ==> F(n+1) ∈ M
then M contains all FISONs which can be subtracted from U(Fn)) without 
changing the assumed result ℕ.

Regards, WM