Deutsch English Français Italiano |
<vol0FSJMuqv_Uox5qeHDiF8wsA4@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!news.nobody.at!weretis.net!feeder8.news.weretis.net!pasdenom.info!from-devjntp Message-ID: <vol0FSJMuqv_Uox5qeHDiF8wsA4@jntp> JNTP-Route: news2.nemoweb.net JNTP-DataType: Article Subject: Re: how References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <daccd066-734a-4138-a64a-e0766e69eadf@att.net> <v26378$1q819$1@dont-email.me> <9310488b-e8c6-4ed8-913d-4abb7e241271@att.net> <t7-UZ1TyOKj1K2a2HoqROmxls_c@jntp> <08f3f962-d6b1-4f7c-b870-8cf29b85e2a7@att.net> <71YzuacI59BwfJhMavFstYgzlhs@jntp> <1e67c0e8-bf67-4d48-9896-57d429fd770c@att.net> <s0sZbdtbdzl3l1994GSDxosTxrc@jntp> <881f89fb-994d-4315-b134-4aec1576bca8@att.net> Newsgroups: sci.math JNTP-HashClient: ZBr__nmWKZEyBSSfbfBMlWWUdDQ JNTP-ThreadID: 4YLc1knY-8u5i_KQ0oWqy89D7aY JNTP-Uri: http://news2.nemoweb.net/?DataID=vol0FSJMuqv_Uox5qeHDiF8wsA4@jntp User-Agent: Nemo/0.999a JNTP-OriginServer: news2.nemoweb.net Date: Tue, 21 May 24 16:55:21 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36 Injection-Info: news2.nemoweb.net; posting-host="7a19405b4245f47946ffce65063ceb09f86be43b"; logging-data="2024-05-21T16:55:21Z/8867305"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: WM <wolfgang.mueckenheim@tha.de> Bytes: 2461 Lines: 33 Le 21/05/2024 à 17:50, Jim Burns a écrit : > On 5/20/2024 4:08 PM, WM wrote: >> Le 19/05/2024 à 22:28, Jim Burns a écrit : > >>> Between each pair of unit fractions, >>> there is a finite distance. >> >> Hence >> not even two unit fractions >> can satisfy the condition to >> sit before any x > 0. > > For any x > 0 > more.than.2 unit.fractions > sit before x > among them are ⅟⌊(1+⅟x)⌋ ⅟⌊(2+⅟x)⌋ ⅟⌊(3+⅟x)⌋ Of course, for any x that you can name, there are ℵo smaller unit fractions. Ax_def > 0: NUF(x_def) = ℵo is right. > > zero unit fractions sit before any x > 0 So it is! Therefore Ax > 0: NUF(x) = ℵo is wrong. If you forget however to distinguish between x_def and x in general, you get the contradiction: Ax > 0: NUF(x) = ℵo is wrong. Ax > 0: NUF(x) = ℵo is right. Regards, WM