Deutsch   English   Français   Italiano  
<vp7005$2pd0e$2@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: The set of necessary FISONs
Date: Thu, 20 Feb 2025 11:26:13 +0100
Organization: A noiseless patient Spider
Lines: 15
Message-ID: <vp7005$2pd0e$2@dont-email.me>
References: <vmo1bs$1rnl$1@dont-email.me>
 <a52c053a-8537-4f77-849d-aba3cf51283f@att.net> <vog83h$1rvmp$4@dont-email.me>
 <aa0dc4b50695d3571aae1a3309c5c87736f82a48@i2pn2.org>
 <vohskb$28sjf$3@dont-email.me> <862117d5-9944-4eaa-9bbf-040e376c27e1@att.net>
 <voneac$3eut3$1@dont-email.me> <61fda474-8104-4e37-a1cc-d9fec975bdc5@att.net>
 <vonrm3$3hu2c$1@dont-email.me> <aced9a6c-e670-40c0-ae9b-53636b4bf97d@att.net>
 <voq2hj$s46$3@dont-email.me> <89d12ce1-5183-40f6-aa37-e4c1522fbc3e@att.net>
 <voshi3$hjfg$3@dont-email.me> <fe4bf7b0-67c6-4236-a262-7cc3a4f2c50c@att.net>
 <vp03bv$188u2$8@dont-email.me>
 <b51bc483ae36ed77846449485574f2e05c08bb4d@i2pn2.org>
 <vp1ibt$1k723$2@dont-email.me>
 <412fef253b0cce7487c30301e52aa8b3ae1bdeda@i2pn2.org>
 <vp2872$1o28v$2@dont-email.me>
 <2c490daaadda4aa226b88ff0e98a1c1f4357cb38@i2pn2.org>
 <vp4q0r$fdmd$2@solani.org>
 <4ebfd24f5b4eb2faf12a367c0dd3976b78c15c5c@i2pn2.org>
 <vp52vt$fi52$1@solani.org>
 <253cfda389d35df4232c6c6b2e4db60d59e34ebc@i2pn2.org>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 20 Feb 2025 11:26:13 +0100 (CET)
Injection-Info: dont-email.me; posting-host="5fd5b46ee2dbc38e71580a8df378aca7";
	logging-data="2929678"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18LRTa/6tiiNXq7zp2tDvcJu33R2LTwTtY="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:vZq5vco+eTk/DiHuCNmWwVJM9Bg=
Content-Language: en-US
In-Reply-To: <253cfda389d35df4232c6c6b2e4db60d59e34ebc@i2pn2.org>
Bytes: 2576

On 19.02.2025 18:16, joes wrote:
> Am Wed, 19 Feb 2025 18:05:01 +0100 schrieb WM:

>> By induction all elements can be defined. This guarantees the existence
>> of an infinite set. Um aber die Existenz "unendlicher" Mengen zu
>> sichern, bedürfen wir noch des folgenden ... Axioms. [Zermelo:
>> Untersuchungen über die Grundlagen der Mengenlehre I, S. 266]
> Sure. Nobody is arguing against that.

Fine. Induction covers all elements of an infinite inductive set. There 
is no k+1 remaining.
Subtraction of all elements leaves the empty set.
UF = ℕ ==> Ø = ℕ.

Regards, WM