| Deutsch English Français Italiano |
|
<vppc9h$32bv9$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: efji <efji@efi.efji> Newsgroups: sci.math Subject: Re: New equation Date: Thu, 27 Feb 2025 10:46:23 +0100 Organization: A noiseless patient Spider Lines: 44 Message-ID: <vppc9h$32bv9$1@dont-email.me> References: <CJRYb90R4pKx6LHEBcCdcCA4y30@jntp> <d2lprjtieerl4rjrqs9s878j0d03jm645q@4ax.com> <MimQ6gJUHMh7Qd3O8h9HuwqFhUg@jntp> <15vqrj5iscra2hlaiukp60qo0mkiquvai8@4ax.com> <esk4yUvD7xtbFRMwGfaB_cgVGwg@jntp> <vpld4o$26f02$1@dont-email.me> <ZuBkOZlN3Tt29PxIPLwN6BSCDt0@jntp> <vpli8o$27a25$2@dont-email.me> <paGqSVDKFAulO0cdlEqGbkSJSws@jntp> <vplobr$28etg$1@dont-email.me> <_Obp8c7UY5bGF28tIGHuSkSSSTo@jntp> <vplu46$294n9$1@dont-email.me> <vpm321$29pat$1@dont-email.me> <p6OcnTFAkOVreiL6nZ2dnZfqnPqdnZ2d@giganews.com> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 27 Feb 2025 10:46:25 +0100 (CET) Injection-Info: dont-email.me; posting-host="f2448606a97e2833e484f510ea618ec0"; logging-data="3223529"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/uBnACEgB85vFmiE3w2X0+" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:B4spLONGO5bhpKK4zpf9QvGjM7k= Content-Language: fr, en-US In-Reply-To: <p6OcnTFAkOVreiL6nZ2dnZfqnPqdnZ2d@giganews.com> Le 27/02/2025 à 05:19, Ross Finlayson a écrit : > > Division in complex numbers is opinionated, not unique. :) Hachel has a brother ! > > So, the natural products and alll their combinations > don't necessarily arrive at "staying in the system". wow > > Furthermore, in things like Fourier-style analysis, > which often enough employ numerical methods a.k.a. > approximations here the small-angle approximation > in their derivations, _always have a non-zero error_. big time BS :) > > Then, something like the "identity dimension", sees > instead of going _out_ in the numbers, where complex > numbers and their iterative products may neatly model > reflections and rotations, instead go _in_ the numbers, > making for the envelope of the linear fractional equation, > Clairaut's and d'Alembert's equations, and otherwise > with regards to _integral_ analysis vis-a-vis the > _differential_ analysis. Nonsense ala Hachel > > These each have things the other can't implement, > yet somehow they're part of one thing. > > It's called completions since mathematics is replete. A BS-philosophical version of Hachel. Let's park them together. -- F.J.